Инженерная графика
Физика
Атомные станции
Строймех
ТКМ
Начертательная геометрия
Экология энергетики
Сопромат
Готика
Черчение
Теплотехника
Математика

Театр

Конспект лекций
Атомная энергетика
Карта

Ядерная физика начало

Статистика

Статистика – коллективное свойство системы взаимодействующих частиц, связанное с неразличимостью частиц и вероятностным характером описания состояний системы в квантовой механике. Определение этого понятия будет дано ниже. Статистика проявляется для систем, состоящих из не менее двух одинаковых микрочастиц. Одинаковые микрочастицы имеют равные массы, электрический заряд, спин и другие характеристики, с помощью которых отличают микрочастицы одного сорта от микрочастиц другого сорта. Нельзя пронумеровать микрочастицы одной природы, чтобы можно было следить за движением каждой из них вдоль соответствующей траектории, уже хотя бы потому, что понятие траектории в квантовой теории теряет смысл. Поэтому вводится понятие тождественности частиц, согласно которому все одинаковые частицы, образующие данную квантовомеханическую систему, оказываются абсолютно неразличимыми. Если в системе тождественных частиц поменять местами две частицы, то перестановка частиц не приведет ни к каким изменением в состоянии системы и не может быть экспериментально обнаружена.

Пусть имеется простейшая система из двух тождественных частиц. Состояние каждой из частиц в пространстве задается тремя координатами и проекцией спина на выбранную ось. Обозначим эти состояния каждой из частиц как ζ1 и ζ2 соответственно. Такая система описывается волновой функцией ψ(ζ12). В силу принципа тождественности частиц, состояния системы, получающейся в результате простой перестановки обеих частиц, должно быть физически эквивалентным исходному состоянию. В квантовой механике доказывается, что

ψ(ζ21) = ± ψ(ζ12).

(1.11.1)

Таким образом, при перестановке частиц волновая функция системы либо не меняется, либо меняет свой знак. Функцию, которая не меняет свой знак при перестановке пары частиц, называют симметричной, в противном случае – антисимметричной. Эти же свойства обобщаются на системы, включающие более двух тождественных частиц.

Такое свойство тождественных частиц по отношению к перестановкам называется статистикой.

Вид симметрия волновой функции определяется физической природой частиц и не зависит ни от энергии взаимодействия между частицами, ни от наличия внешних полей.

Квантовый гармонический осциллятор

Линейный гармонический осциллятор — систе­ма, совершающая движение под действием ква­зиупругой силы. Осциллятор называют одномерным, если система, например частица, может двигаться только вдоль одной прямой.

Задача об уровнях энергии одномерного гармонического осциллятора является одной из наиболее важных задач о собственных значениях.

В квантовой теории понятие силы теряет смысл, поэтому квантовый гармонический осциллятор следует определить как поведение частицы массы т с потенциальной энергией U(x) такой же, как у классического осциллятора, а именно

(12.25)

Собственная частота классического гармонического осциллятора равна ωо = √k/т, где т — масса частицы (см. Cавельев, кн. 1).

Выразив в формуле (12.25) k через т и ωо, получим

(12.26)

где х — отклонение от положения равновесия. Зависимость (12.26) имеет вид параболы (рис. 12.5), т. е. «потенциальная яма» в данном случае является параболической.

Рис.12.5.

С классической точки зрения амплитуда малых колебаний осциллятора определяется его полной энергией Е (см. рис. 12.5). В точках с координатами ± хmax кинетическая энергия осциллятора равна нулю и вся энергия переходит в потенциальную энергию осциллятора. Поэтому с классической точки зрения частица не может выйти за пределы области (-xmax, +xmax). Такой выход означал бы, что ее потенциальная энергия больше полной, что абсурдно, так как приводит к выводу, что кинетическая энергия отрицательна. Таким образом, классический осциллятор находится в «потенциальной яме» с координатами –хmax ≤ х≤ хmax «без права выхода» из нее.

Гармонический осциллятор в квантовой механике — квантовый осциллятор — описывается уравнением Шредингера (12.16), учитывающим выражение (12.26) для потенциальной энергии. Тогда стационарные состояния квантового осциллятора определяются уравнением Шредингера вида

(12.27)

где Е — полная энергия осциллятора.

В теории дифференциальных уравнений доказывается, что уравнение (12.27) имеет однозначные, конечные и непрерывные решения при собственных значениях

(12.28)

Из формулы (12.28) следует: энергия квантового осциллятора может иметь лишь дискретные значения, т. е. квантуется.

Из формулы (12.28) также следует, что уровни энергии расположены на одинаковых расстояниях друг от друга (на рис. 12.6 они изображены горизонтальными прямыми), а именно расстояние между соседними энергетическими уровнями равно ћωо, причем минимальное значение энергии Е0 = (1/2) ћωо. При n >> 1 En = пћωо (т. е. энергетические уровни осциллятора совпадают с величинами квантованной энергии осциллятора, постулируемыми Планком в теории излучения черного тела.

Как следует из выражения (12.28), минимальная энергия квантового осциллятора

(12.29)

она называется энергией нулевых колебаний.

Наличие энергии нулевых колебаний типично для квантовых систем и является следствием соотношения неопределенностей: частица не может находиться на дне потенциальной ямы независимо от ее формы. Если бы это было возможно, то импульс, а также его неопределенность обращались бы в нуль. Тогда неопределенность координаты ∆х→ ∞, что противоречит пребыванию частицы в потенциальной яме.

Плотность вероятности обнаружить частицу на оси х определяется квадратом модуля волновой функции |ψ(х)|2. На рис. 12.6 представлены кривые распределения плотности вероятности |ψn(х)|2 для различных состояний квантового осциллятора (для п = 0, 1 и 2).

Рис.12.6.

В точках А и А', В и В', Си С' потенциальная энергия равна полной энергии (U = E), причем, как известно, классический осциллятор не может выйти за пределы этих точек.

Для квантового осциллятора |ψn(х)|2 и за пределами этих точек имеет конечные значения. Это означает, в свою очередь, что имеется конечная, хотя и небольшая, вероятность обнаружить частицу за пределами «потенциальной ямы». Этот результат не противоречит выводам квантовой механики, поскольку, как уже отмечалось, равенство Т = Е— U в квантовой механике не имеет силы, так как кинетическая (Т) и потенциальная (U) энергии не являются одновременно измеримыми величинами.

Рис. 12.7.

При больших значениях п квантовое распределение плотности вероятности проявляет все большее сходство с классическим (рис. 12.8), где представлены квантовое (сплошная кривая) и классическое (пунктир) распределение плотности вероятности для п = 10.

Рис. 12.8.

В этом находит свое выражение постулат квантовой механики — принцип соответствия Бора: выводы и законы квантовой механики при больших значениях квантовых чисел должны соответствовать выводам и законам классической физики.

Существование нулевой энергии подтверждается экспериментами по изучению рассеяния света кристаллами при низких температурах. Оказывается, что интенсивность рассеянного света по мере понижения температуры стремится не к нулю, а к некоторому конечному значению, указывающему на то, что и при абсолютном нуле колебания атомов в кристаллической решетке не прекращаются.

Более детальный расчет, выходящий за рамки уравнения Шредингера, показывает, что для квантового осциллятора возможны переходы лишь между соседними «стационарными» уровнями, при которых квантовое число n изменяется на единицу:

(12.30)

Это условие называют правилом отбора для квантового гармонического осциллятора.

Из правила (12.30) вытекает, что энергия гармонического осциллятора может изменяться только порциями ћω. Планк предполагал, что энергия гармонического осциллятора может быть лишь целой кратной ћω. В действительности же имеется еще нулевая энергия, существование которой было установлено только после создания квантовой механики.

Статистика