Инженерная графика
Физика
Атомные станции
Строймех
ТКМ
Начертательная геометрия
Экология энергетики
Сопромат
Готика
Черчение
Теплотехника
Математика

Театр

Конспект лекций
Атомная энергетика
Карта

Ядерная физика начало

Энергия связи ядра

Ядро представляет систему связанных между собой нуклонов. Возникновение связанного состояния возможно только под действием ядерных сил притяжения, удерживающих нуклоны в ограниченном объеме. Устойчивость связанного состояния обеспечивается тем, что ядро как система из взаимодействующих между собой нуклонов должна иметь минимум полной энергии. Полная энергия Е1 системы из А нуклонов до объединения в ядро, т.е. находящихся между собой на таких расстояниях, когда действием сил между ними можно пренебречь, будет равна (массы выражены в единицах энергии)

(1.4.1)

где mi – массы нуклонов, из которых образовано ядро.

После объединения нуклонов в ядро массой М полная энергия составит

(1.4.2)

а изменение энергии системы будет равно

(1.4.3)

Работа сил притяжения вызывает переход системы в состояние с меньшей энергией, поэтому величина ΔЕ < 0 будет равна той энергии, которая выделяется при образовании ядра и передается в окружающее пространство. Наоборот, чтобы разрушить ядро и удалить нуклоны на такие расстояния, где их можно считать свободными, потребуется затратить энергию |ΔЕ|. Величина

(1.4.4)

называется полной энергией связи ядра. Последнее соотношение справедливо в любой инерциальной системе отсчета. Для устойчивого ядра полная энергия связи положительна и равна той энергии, которую надо затратить, чтобы разделить ядро на все составляющие его нуклоны.

Состояния с одинаковой энергией называют вырожденными, а число различных состояний с определенным значением энергии Еп - кратностью вырождения данного энергетического уровня. Кратность вырождения n-го уровня водородоподобной системы можно определить, учитывая число возможных значений ℓ и т. Каждому из п значений квантового числа ℓ соответствует 2ℓ + 1 значений т. Поэтому полное число N различных состояний для данного п равно

N = = 1 + 3 + 5 + ... + (2п - 1) = п2.

(13.8)

Как будет показано в дальнейшем, это число надо удвоить из-за наличия собственного момента (спина) у электрона. Таким образом, кратность вырождения n-го энергетического уровня

N = 2п2.

(13.9)

Описание состояния электрона. Поскольку в квантовой механике определяют лишь вероятность местонахождения электрона, то для наглядности применяют образ электронного облака. Плотность электронного облака в каждой точке пространства вокруг ядра пропорциональна плотности вероятности обнаружения электрона в этой точке, которая в свою очередь определяется квадратом модуля волновой функции. Квантовые числа n и l характеризуют размер и форму электронного облака, а квантовое число m – ориентацию электронного облака в пространстве.

В квантовой механике, по аналогии со спектроскопией, применяются условные обозначения для состояний с различными l, как указано ниже в (13.10).

Значения l

0 1 2 3 4 5  (13.10)

s p d f g h

 (13.10)

Состояния

Принято говорить о s-состояниях (или s-электронах) для l = 0, p-состояниях (или p-электронах) для l = 1 и т. д. Главное квантовое число п указывают перед символом состояния с данным ℓ. Например, электрон, имеющий главное квантовое число п = 3 и ℓ = 2, обозначают символом 3d и т. д.

Распределение электронной плотности (радиальное и пространственное) для состояний электрона в атоме водорода при n = 1 и n = 2 показано на рис. 13.2 для s и p состояний.

§1.4. Энергия связи ядра

 

эстрадный вокал для взрослых;dolls-es.ru интернет магазин на русском;курсы английского с носителем