Инженерная графика
Физика
Атомные станции
Строймех
ТКМ
Начертательная геометрия
Экология энергетики
Сопромат
Готика
Черчение
Теплотехника
Математика

Театр

Конспект лекций
Атомная энергетика
Карта

Ядерная физика начало

Максимум удельной энергии связи

Максимум удельной энергии связи приходится на ядра с массовыми числами 55 ÷ 60 и спадает к обоим краям кривой.

Резкое уменьшение (А) в области малых А объясняется поверхностными эффектами. Нуклоны у поверхности ядра не полностью насыщают все свои возможные связи. Этот эффект уменьшает полную энергию связи на величину, пропорциональную числу нуклонов в поверхностном слое. Роль поверхностных эффектов возрастает с увеличением отношения поверхности к объему, т.е. при переходе к легким ядрам.

На этом участке кривой (А) наблюдаются резкие «пики», отвечающие ядрам 4H, 12C, 16O, которые указывают на кластерную структуру этих ядер. Для этих ядер энергетически выгодным оказывается объединение нуклонов в α-частичные кластеры (2p+2n).

Справа от максимума величина плавно уменьшается, достигая для самого тяжелого природного элемента - урана – значения 7,5 Мэв/нуклон. Это уменьшение объясняется электрическим отталкиванием протонов. Поскольку кулоновские силы не обладают свойством насыщения, то при переходе к тяжелым ядрам удельная энергия связи убывает из-за роста электростатической энергии взаимного расталкивания протонов, величина которой пропорциональна Z2. В ядрах с малым числом протонов она незначительна, но существенно влияет на прочность ядер в области тяжелых ядер.

Из наличия максимума у зависимости (А) следует важный вывод о двух энергетически выгодных процессах: 1) для наиболее тяжелых ядер возможен процесс деления на два более легких; 2) нескольким легчайшим ядрам, наоборот, энергетически выгодно сливаться друг с другом в более тяжелые ядра (синтез ядер). Оба процесса протекают с выделением большого количества энергии в форме кинетической энергии продуктов реакции.

Энергия связи одного присоединяемого или отделяемого от ядра нуклона может зависеть от четности числа имеющихся в составе ядра протонов и нейтронов. Детальный анализ удельной энергии связи как функции А и Z позволил сделать заключение о наибольшей устойчивости ядер с четным числом протонов и нейтронов (т.н. четно-четные ядра). Эти ядра имеют удельную энергию связи, примерно на 1 Мэв большую, чем соседние ядра, у которых либо N, либо Z - нечетные (Ч‑Н и Н-Ч ядра) и, как отмечалось в п.7 §1.1, имеют наибольшую распространенность в природе. Этот факт свидетельствует о том, что объединение внутри ядра одноименных нуклонов в пары (эффект спаривания) обусловлен действием между ними добавочным ядерных сил и является энергетически выгодным процессом, увеличивающим удельную энергию связи приблизительно на 1 Мэв. Промежуточное положение по величине удельной энергии связи и распространенности в природе занимают четно-нечетные и нечетно-четные ядра, количества которых равны. Наименьшие значение удельной энергии связи и количества стабильных нуклидов (четыре) имеют нечетно-нечетные ядра.

Заслуживает внимания особо высокие значения удельной энергии связи, даже на фоне четно-четных ядер, для ядер с содержанием нейтронов и (или) протонов, равным 2, 8, 20, 50, 82, 126 (только для нейтронов). Эти числа (и соответствующие ядра) получили название магических. Элементы с магическими ядрами имеют большую распространенность в природе. Например, олово, атомный номер которого Z = 50, имеет 10 стабильных изотопов. Наблюдается наибольшее число стабильных изотонов для N = 82. Особенно устойчивыми являются дважды магические ядра, у которых и число нейтронов, и число протонов равно одному из магических чисел, например, , , , .

Энергии удельной связи нуклонов в ядре примерно в миллион раз превышает энергию связи валентных электронов в атоме, равную ~ 10 эВ для большинства атомов. Поэтому энергия, выделяющаяся в ядерных реакциях, примерно в миллион раз превышает энергию химических реакций, что и определяет практическое значение использования ядерных реакций в качестве источника энергии.

Общее правило (1.4.4) дает возможность рассчитать энергию связи в ядре любого из нуклонов или группы связанных нуклонов.

Например, средняя энергия связи для нейтрона равна:

(1.4.16)

для протона:

(1.4.17)

Эти величины положительны для всех ядер, не испытывающих радиоактивного распада с испусканием отдельных нуклонов (нуклоностабильные ядра), а равенствоихнулю дает границы области существования таких ядер, обозначенные приближенно на рис. 1.1.2. Как следует из (1.4.4), (1.4.16) и (1.4.17) величины  не равны друг другу.

Например, энергия связи a-частицы с ядром урана 238U отрицательна:

= - 4,2 МэВ,

(1.4.18)

что свидетельствует о нестабильность ядра урана относительно a-распада.

 

Цепные реакции делятся на управляемые и неуправляемые. Взрыв атомной бомбы, например, является неуправляемой реакцией. Чтобы атомная бомба при хранении не взорвалась, в ней  (или ) делится на две удаленные друг от друга части с массами ниже критических. Затем с помощью обычною взрыва эти массы сближаются, общая масса делящегося вещества становится больше критической и возникает взрывная цепная реакция, сопровождающаяся мгновенным выделением огромного количества энергии и большими разрушениями. Взрывная реакция начинается за счет имеющихся нейтронов спонтанного деления или нейтронов космического излучения. Управляемые цепные реакции осуществляются в ядерных реакторах.

Кинетическая энергия, выделяющаяся при делении одного ядра урана, огромна – порядка 200 МэВ. Оценку выделяющейся при делении ядра энергии можно сделать с помощью понятия удельной энергии связи нуклонов в ядре. Удельная энергия связи нуклонов в ядрах с массовым числом A ≈ 240 порядка 7,6 МэВ/нуклон, в то время как в ядрах с массовыми числами A = 90–145 удельная энергия примерно равна 8,5 МэВ/нуклон. Следовательно, при делении ядра урана освобождается энергия порядка 0,9 МэВ/нуклон или приблизительно 210 МэВ на один атом урана. При полном делении всех ядер, содержащихся в 1 г урана, выделяется такая же энергия, как и при сгорании 3 т угля или 2,5 т нефти.

В природе имеются три изотопа, которые могут служить ядерным топливом: ,, . Исходным продуктом для получения искусственного ядерного топлива  служит

(16.42)

а исходным продуктом для получения ядерного топлива  служит

(16.43)

Реакции (16.42) и (16.43), таким образом, открывают реальную возможность воспроизводства ядерного горючего в процессе цепной реакции деления.

Устройство, в котором поддерживается управляемая реакция деления ядер, называется ядерным (или атомным) реактором. Схема ядерного реактора на медленных нейтронах приведена на рис. 16.12.

Ядерная реакция протекает в активной зоне реактора, которая заполнена

замедлителем и пронизана стержнями, содержащими обогащенную смесь изотопов урана с повышенным содержанием урана-235 (до 3 %). В активную зону вводятся регулирующие стержни, содержащие кадмий или бор, которые интенсивно поглощают нейтроны. Введение стержней в активную зону позволяет управлять скоростью цепной реакции. Активная зона охлаждается с помощью прокачиваемого теплоносителя, в качестве которого может применяться вода или металл с низкой температурой плавления (например, натрий, имеющий температуру плавления 98 °C). В парогенераторе теплоноситель передает тепловую энергию воде, превращая ее в пар высокого давления. Пар направляется в турбину, соединенную с электрогенератором. Из турбины пар поступает в конденсатор. Во избежание утечки радиации контуры теплоносителя I и парогенератора II работают по замкнутым циклам. Турбина атомной электростанции является тепловой машиной, определяющей в соответствии со вторым законом термодинамики общую эффективность станции.

Рис. 16.12.

Схема устройства ядерного реактора на медленных нейтронах

Наряду с ядерным реактором, работающим на медленных нейтронах, большой практический интерес представляют реакторы, работающие без замедлителя на быстрых нейтронах. В таких реакторах ядерным горючим является обогащенная смесь, содержащая не менее 15 % изотопа . Преимущество реакторов на быстрых нейтронах состоит в том, что при их работе ядра урана-238 (), поглощая нейтроны, посредством двух последовательных β–-распадов превращаются в ядра плутония (см. (16.43)), которые затем можно использовать в качестве ядерного топлива.

Коэффициент воспроизводства таких реакторов достигает 1,5, т. е. на 1 кг урана-235 получается до 1,5 кг плутония. В обычных реакторах также образуется плутоний, но в гораздо меньших количествах.

Первый ядерный реактор был построен в 1942 году в США под руководством Э. Ферми. В нашей стране первый реактор был построен в 1946 году под руководством И. В. Курчатова.

§1.4. Энергия связи ядра