Инженерная графика
Физика
Атомные станции
Строймех
ТКМ
Начертательная геометрия
Экология энергетики
Сопромат
Готика
Черчение
Теплотехника
Математика

Театр

Конспект лекций
Атомная энергетика
Карта

Ядерная физика начало

Ядерные силы

Ядерные силы относятся к так называемым сильным взаимодействиям и существенно отличаются по своим свойствам от электромагнитных и гравитационных. В полной мере природа ядерных сил до настоящего времени не выяснена. Даже для простейшей системы из двух нуклонов неизвестна зависимость ядерных сил от расстояния между нуклонами. Короткодействие ядерных сил и свойство насыщения, многообразие свойств ядерных сил не позволяют создать законченную теорию, подобную квантовой электродинамики для расчета свойств атомов.

Перечислим свойства ядерных сил и укажем на экспериментальные факты, подтверждающие эти свойства.

 1. Огромная энергия связи нуклонов в ядре свидетельствует о том, что между нуклонами действуют силы притяжения, что подтверждается существованием стабильных ядер. Эти силы самые интенсивные в природе. Например, энергия связи простейшего ядра - 4Не - составляет 2,22 МэВ, а простейшего атома – водорода – равна 13,6 эВ.

2. Уже первые опыты Резерфорда показали, что ядерные силы – короткодействующие. Это свойство ядерных сил подтверждается многочисленными данными по измерению размеров атомных ядер. Ядерные силы удерживают нуклоны на расстояниях ~ (1,2 ÷ 1,4) ·1013см. При расстояниях между нуклонами, превышающих 2·1013см действие ядерных сил не обнаруживается, тогда как на расстояниях меньших 1·1013см, притяжение нуклонов заменяется отталкиванием.

3. На расстояниях, где между протонами действуют ядерные силы притяжения, они превосходят кулоновские силы отталкивания приблизительно в 100 раз, действие которых на этих расстояниях также очень велико. Короткодействие ядерных сил приводит к резкому разграничению областей, где действуют только дальнодействующие кулоновские силы, или только ядерные, которые подавляют кулоновские силы на малых расстояниях. На рис.1.9.1а показана потенциальная энергия взаимодействия протона с тремя различными ядрами: легким (), средним ()и тяжелым (). Функции U(r) представляют собой энергию взаимодействия между протоном и ядром. За границами ядра существует только кулоновское отталкивание, энергия которого равна

(1.9.1)

где Z – заряд ядра, z - заряд налетающей частицы. На расстоянии от ядра, где начинает проявляться действие ядерных силы притяжения, потенциальная энергия круто падает на расстояниях ~ 10-13см, что соответствует большой интенсивности ядерных сил (сила пропорциональна антиградиенту потенциальной энергии dU/dr). Внутри ядра потенциальная энергия отрицательна (см. рис. 1.4.1) и представлена некоторой средней величиной (дно потенциальной ямы). На рисунке 1.9.1а пунктиром показаны также удельные энергии связи рассматриваемых ядер. Радиусы ядер на этом же рисунке подсчитаны по формуле (1.5.2). Энергия ядерного взаимодействия на  рисунке 1.9.1а характеризует только центрально-симметричную часть ядерных сил и не учитывает зависимость ядерных сил от спина (см. ниже п.4) и нецентральный характер ядерных сил (см. ниже п.7).

 

 

Систему энергетических уровней атома принято называть и иначе – системой термов. Терм Т – это величина, определяемая как

Тn = R/n2 = |En|/ћ.

(13.20)

Энергетическому уровню (13.19) соответствует терм, имеющий согласно (13.20) вид

(13.21)

Зависимость энергии электрона от орбитального квантового числа l является принципиальным отличием уровней энергии атомов щелочных металлов от уровней энергии атома водорода. Эта зависимость означает, что в данном случае снимается вырождение по l . Физически это связано с тем, что в атомах щелочных металлов внешний электрон находится в электрическом поле атомного остова. Заряд последнего не точечный, и распределение его несколько отличается от сферически-симметричного. Электрическое поле остова уже не кулоновское (не ~ 1/r2). Благодаря этому и получается зависимость энергии Е электрона не только от п, но и от l.

Исследование спектров ионов щелочных металлов показало, что момент импульса атомного остова (т. е. ядра и Z-1 электронов) равен нулю. Следовательно, орбитальный момент атома щелочного металла оказывается равным моменту его внешнего электрона и определяется квантовым числом l.

Для l валентного электрона атомов щелочных металлов действует такое же правило отбора, как и для l электрона водородного атома, т.е.

∆l = ± 1.

(13.22)

Главное квантовое число n может изменяться на любое целое число.

 Тонкая структура спектральных линий. Исследование спектральных линий атомов щелочных металлов приборами с большой разрешающей способностью обнаружило, что эти линии являются двойными (дублетами), т. е. образуют тонкую структуру.

Спектральные линии, состоящие из нескольких компонент, называют мультиплетами. Число компонент в мультиплете различных атомов может быть равно двум (дублеты), трем (триплеты), четырем (квартеты) и т. д. В частности, спектральные линии могут быть и одиночными (синглеты).

Тонкая структура, т. е. расщепление спектральных линий, очевидно, вызвана расщеплением самих энергетических уров­ней (термов). Вместе с тем, это никак не следует из решения уравнения Шредингера. В чем же причина такого загадочного расщепления? Ответ на этот вопрос дается ниже.


§1.9. Ядерные силы