Инженерная графика
Физика
Атомные станции
Строймех
ТКМ
Начертательная геометрия
Экология энергетики
Сопромат
Готика
Черчение
Теплотехника
Математика

Театр

Конспект лекций
Атомная энергетика
Карта

Ядерная физика начало

§3.3. Активация

Активация – процесс получение из стабильных ядер радиоактивных ядер - представляет ядерную реакцию, рассмотрению которых посвящена глава 4. Выше было указано, что по физической природе искусственные радиоактивные ядра ничем не отличаются от естественных, так как свойства ядер данного радиоактивного нуклида не зависят от способа его образования. Сейчас остановимся только на основных закономерностях процесса активации.

Пусть q(t) – скорость образования новых радиоактивных ядер, или количество радиоактивных ядер, образующихся в единицу времени. Тогда скорость изменения числа образующихся радиоактивных ядер за время dt составит

(3.3.1)

где- скорость распада (активность) образующихся ядер. Если принять, что скорость образования q(t) = q – постоянна и не зависит от времени, то решение (3.3.1) с начальным условием N(t = 0) = 0 имеет вид:

(3.3.2)

Умножив (3.3.2) слева и справа на постоянную распада λ получим, учитывая (3.2.12), наведенную активность вещества:

(3.3.2)

На рис. 3.3.1 показана эта функция, построенная в относительных единицах. Из рисунка видно, что уже при t = 4Т1/2 наведенная активность составляет около 95 % от предельного значения.

Предельная или максимально достижимая активность получаемого вещества при   не зависит, как следует из (3.3.2), от постоянной распада λ, а равняется скорости q образования радиоактивных ядер. Однако время достижения предельной активности определяется величиной λ. Меньшему значению λ требуется большее время достижения активности насыщения и наоборот. После прекращения активации происходит только процесс распада образовавшегося вещества в соответствии с (3.2.7) или (3.2.13).

В ядерном реакторе активации под действием нейтронного излучения подвергается корпус реактора и другие детали конструкции, а также теплоноситель (кислород воды или натрий). Наряду с радиоактивностью продуктов деления, эта наведенная активность является серьезным фактором, влияющим на проектирование защиты АЭС и нa ее экологические и экономические характеристики.

Спиновый магнитный момент. Зная степень неоднородности магнитного поля, т. е. дВг/дг, Штерн и Герлах по величине расщепления пучка на фотопластинке рассчитали значение проекции спинового магнитного момента на направление магнитного поля, μB. Выяснилось, что μB равен одному магнетону Бора. Этот результат приводит к гиромагнитному отношению вдвое превышающему гиромагнитное отношене для орбитальных моментов. В связи с этим говорят, что спин обладает удвоенным магнетизмом.

Итак, спиновый магнитный момент и его проекция на произвольную ось Z определяются как

(13.50)

μSz = -2μБ ms, ms=S,S-1, …, -S.

(13.51)

При S = 1/2 ms = +1/2 и -1/2.

Принято говорить, что спиновый магнитный момент электрона равен одному магнетону Бора. Такая терминология обусловлена тем, что при измерении магнитного момента мы обычно измеряем его проекцию, а она как раз и равна одному μБ. Опыты Штерна и Герлаха явились еще одним убедительным доказательством наличия у электрона спина. Помимо этих опытов следует упомянуть и о так называемых магнитомеханических явлениях — опытах Эйнштейна и де Хааса, а также опыте Барнетта. И в этих опытах было обнаружено, что гиромагнитное отношение спиновых моментов тоже вдвое больше отношения орбитальных.

Полный магнитный момент атома. Вследствие удвоенного магнетизма спина гиромагнитное отношение полных моментов μ/MJ оказывается значительно более сложным. Оно зависит от квантовых чисел L, S и J. Соответствующий расчет, проводимый в квантовой теории, позволил найти магнитный момент μ и его проекцию на ось Z:

(13.52)

μ z = - μБgmJ, mJ = J, J-1, …, -J,

(13.53)

где g — множитель (или фактор) Ланде

В частности, в синглетных состояниях (S = 0) J = L, g = 1, и мы приходим к формулам (13.47) и (13.48). А при L = 0 (J = S, g = 2) — к формулам (13.50) и (13.51).

 

§3.3. Активация