Инженерная графика
Физика
Атомные станции
Строймех
ТКМ
Начертательная геометрия
Экология энергетики
Сопромат
Готика
Черчение
Теплотехника
Математика

Театр

Конспект лекций
Атомная энергетика
Карта

Ядерная физика начало

Постоянная распада

Экспериментально было установлено, что наблюдается регулярная связь между периодом полураспада и кинетической энергией испускаемых α-частиц. Период полураспада α-активных ядер тем больше, чем меньше кинетическая энергия испускаемых a-частиц. Однако, если кинетическая энергия Taa-частиц изменяется в пределах 4 - 9 МэВ, то диапазон изменения периодов полураспада составляет 10-7с ÷ 1010лет.

В 1911 г. Гейгер и Неттол установили, что связь между постоянной распада λ радиоактивного ядра и пробегом Rα испускаемой им a-частицы может быть интерпретирована приближенным соотношением

(3.4.11)

для всех трех радиоактивных семейств. Константа А одинакова для всех семейств, а константа В отличается одна от другой примерно на 5 %. Если использовать связь между пробегом и энергией, устанавливаемую формулой (3.4.5), то закон Гейгера-Неттола можно записать в другой форме:

,

(3.4.12)

где константы а и b имеют тот же смысл. Выражение (3.4.12) представляет степенную зависимость постоянной распада λ от Тαс очень большим показателем а. Поэтому вероятность α-распада чрезвычайно чувствительна к энергии Еα, выделяемой при распаде. Уменьшение этой энергии на 1 % уменьшает постоянную распада более чем в 10 раз, а уменьшение на 10 % приводит к уменьшению более чем в  103 раз.

Эти особенности α-распада были объяснены в 1929 г. Гамовым, Генри и Кондоном. Если представить a-частицу как целое в составе материнского ядра, то она должна занимать уровень с положительной энергией, равной Тα (рис. 3.4.3). У тяжелых ядер высота кулоновского барьера Вк на рис. 3.4.3 составляет около 30 МэВ для двухзарядной точечной частицы (см. (1.9.2)). Барьер для α-частицы конечных размеров несколько ниже и составляет 22 ÷ 25 Мэв. Преодоление α-частицей с кинетической энергией 4 ÷ 9 Мэв даже такого барьера по классическим представлениям невозможно. Однако, согласно квантовым законам, при любой конечной ширине барьера падающая на него частица с положительной энергией имеет, хотя и малую, но конечную вероятность D «просочиться» сквозь барьер. Величину D часто называют прозрачностью барьера.

Вероятность вылета α-частицы из ядра в единицу времени или постоянная распада λ будет равна числу попыток k в единицу времени пройти сквозь барьер, умноженную на вероятность D просачивания сквозь потенциальный барьер при одном столкновении со стенкой:

l = kD.

(3.4.14)

О периодической системе элементов Д.И. Менделеева.

В основе систематики заполнения электронных состояний в атомах лежит принцип Паули. Это позволяет объяснить Периодическую систему элементов Д.И. Менделеева (1869) — фундаментальный закон природы — основу современной химии, атомной и ядерной физики. Понимание периодической системы элементов основано на идее об оболочечной структуре электронного облака атома. Процесс застройки первых 22-х элементов периодической системы представлен в таблице 13.3. Каждый следующий атом получается из предыдущего добавлением заряда ядра на единицу (е) и добавлением одного электрона, который помещают в разрешенное принципом Паули состояние с наименьшей энергией. Так, третий элемент (литий) имеет, кроме заполненной K-оболочки, один электрон в подоболочке 2s. Этот электрон связан с ядром слабее других и является внешним (валентным, оптическим). Основное состояние этого электрона характеризуется значением п = 2.

 Табл. 13.3

1. Распределение электронов по состояниям называют электронной конфигурацией. Их обозначают символически, например, так:

ls2 2s2 2p6 3s.

Это означает, что в атоме имеются два ls-электрона, два 2s2-электрона, шесть 2р-электронов и один 3s -электрон. Из таблицы 13.3 видно, что это — электронная конфигурация атома Na.

2. Оболочку (или подоболочку), полностью заполненную электронами, называют замкнутой. Электроны в каждой подоболочке называют эквивалентными, у них одинаковые значения nиl.

 3. Вплоть да атома калия К последовательность заполнения оболочек и подоболочек имеет «идеальный» характер. Первый «сбой» происходит с атомом К: внешний электрон занимает, вместо Зd-состояния, 4s. Подобное — не единственный случай в периодической системе, и связано это с тем, что такие конфигурации оказываются более выгодными в энергетическом отношении.

 4. Наблюдаемая периодичность химических и ряда физических свойств атомов объясняется поведением внешних валентных электронов. Выяснилось, что эта периодичность связана с определенной периодичностью электронной конфигурации атомов, в частности, с конфигурацией внешних электронов.

 5. В правой колонке табл. 13.3 приведены основные термы атомов. Для первых четырех атомов определение основного состояния не вызывает трудности — для этого достаточно принципа Паули. Но уже для бора В возникает неопределенность: одному р-электрону соответствует l = 1 и s = 1/2, откуда j = 3/2 или 1/2, т. е. два состояния: Р3/2 и P1/2. Какое из них является основным, можно решить лишь с помощью правил Хунда.

Альфа – распад