Инженерная графика
Физика
Атомные станции
Строймех
ТКМ
Начертательная геометрия
Экология энергетики
Сопромат
Готика
Черчение
Теплотехника
Математика

Театр

Конспект лекций
Атомная энергетика
Карта

Ядерная физика начало

Бета – распад

Бета-распад (b-распад) является спонтанным процессом преобразования ядра, в результате которого ядро изменяет свой заряд на ΔΖ = ±1, сохраняя при этом неименное число нуклонов А (массовое число). В некоторых случаях образуются свободные b-частицы (электрон β-или позитрон β+) или перестает существовать один из электронов («захват» ядром электрона из электронной оболочки) соответствующего атома. Свойства электрона и позитрона тождественны, за исключением знака электрического заряда. Потоки образующихся b-частиц называются b-излучением.

β-Распад – самый распространенный вид радиоактивных превращений ядер в природе. В отличие от α-распада, который наблюдается исключительно у тяжелых ядер, β-распаду подвержены ядра практически во всей области значений массового числа А, начиная от единицы (свободный нейтрон) и заканчивая массовыми числами самых тяжелых ядер.

Энергия, выделяющаяся при β-распаде, опять же, в отличие от α-распада, лежит в довольно широком интервале значений от 0,02 МэВ прираспаде ядра трития 3Н до 16,4 МэВ при распаде ядра 12N.

Периоды полураспада β-активных ядер изменяются в очень широких пределах от 10-2с до 1018лет.

При рассмотрении движения квантового объекта необходимо во многих случаях отказаться от самого понятия классической траектории.

Часто теряет смысл деление полной энергии Е частицы (как квантового объекта) на потенциальную U и кинетическую К. В самом деле, первая, т. е. U, зависит от координат, а вторая — от импульса. Эти же динамические переменные не могут иметь одновременно определенного значения.

Соотношение неопределенностей проявляет себя в атоме подобно силам отталкивания на малых расстояниях. В результате электрон находится в среднем на таком расстоянии от ядра, на котором действие этих сил отталкивания компенсируется силой кулоновского притяжения.

Волновая функция и ее интерпретация

Для микрочастиц из-за соотношения неопределенностей классическое определение состояния частицы (координаты и импульс), вообще говоря, утрачивает смысл. Это относится и к понятию силы, которая по определению является функцией классического состояния.

В соответствии с корпускулярно-волновым дуализмом в квантовой теории состояние частицы задается пси-функцией Ψ(r, t), которая является комплексной величиной и формально обладает волновыми свойствами.

Для понимания физического смысла пси-функции рассмотрим результаты опытов при прохождении пучка моноэнергетических электронов через двойную щель шириной порядка 1 мкм (рис.12.1).

Рис. 12.1.

Места попадания электронов регистрируются на фотопластинке в виде точек. На фотопластинке проявляется четкое распределение интен­сивности, подобное дифракционной картине волн , что доказывает наличие у электронов волновых свойств. Отметим, что при уменьшении потока электронов, падающих на щель, но при увеличении времени экспозиции характер дифракционной картины не меняется.

Согласно волновым представлениям о природе света, интенсивность дифракционной картины пропорциональна квадрату амплитуды световой полны. По представлениям фотонной теории, интенсивность определяется числом фотонов, попадающих в данную точку дифракционной картины. Следовательно, число фотонов в данной точке дифракционной картины задается квадратом амплитуды световой волны, в то время как для одного фотона квадрат амплитуды определяет вероятность попадания фотона в ту или иную точку.

Бета – распад