Инженерная графика
Физика
Атомные станции
Строймех
ТКМ
Начертательная геометрия
Экология энергетики
Сопромат
Готика
Черчение
Теплотехника
Математика

Театр

Конспект лекций
Атомная энергетика
Карта

Ядерная физика начало

Реакции под действием нейтронов

Резонансные процессы

Появление резонансов (см. §4.2 и §4.6) в реакциях являетсяхарактерной особенностью реакций, идущих с образованием составного ядра. Физической причиной появления резонансов при взаимодействии нейтронов с ядрами служит наличие дискретной системы уровней у связанной системы нейтрон – ядро-мишень, которой является составное ядро. Сечение образования составного ядра должно определяться длиной волны де Бройля (4.9.13) для нейтрона, которая представляет некоторый эффективный радиус взаимодействия движущейся частицы с точечными объектами при возникновении связанного состояния. Длина волны (4.9.13) нейтрона обратно пропорциональна его скорости и при малых значениях кинетической энергии нейтрона может быть очень большой. Вместе с тем образование составного ядра возможно только при определенном значении кинетической энергии нейтрона (см. §4.2) в пределах естественной ширины уровня. За пределами этого узкого интервала энергии составное ядро не образуется и длина волны нейтрона уже не играет роли, а сечение потенциального рассеяния при этом определяется только геометрическими размерами ядра и равно 4πR2 (1 - 10 барн), где R – радиус ядра. В итоге зависимость сечения от энергии нейтрона приобретает резонансный характер (рис. 4.9.3).

Рассмотрим характеристики отдельного резонанса (рис. 4.9.3). Полная ширина резонанса Г определяется на половине высоты резонанса и связана с шириной возбужденного уровня и средним временем жизни уровня соотношением неопределенностей. Нетрудно оценитьть, что ширина резонанса Г ≈ 7۰10-2эВ, если τ = 10‑14с. Если же  то имеем стационарное состояние, а для стационарного уровня Г → 0. Составное ядро может распадаться по различным каналам: с испусканием нейтрона (n); g-кванта (γ); может испытать деление (f); распасться с испусканием протона или a‑частицы и т.д. по любому из возможных каналов (4.1.2), каждый из которых имеет свою парциальную ширину. Вероятности этих процессов различны, но полная вероятность λ распада составного ядра в единицу времени (постоянная распада) равна

,

(4.9.30)

а постоянная распада связана со средним временем жизни соотношением

.

(4.9.31)

Следовательно

,

(4.9.32)

то есть полная ширина уровня складываетсяиз парциальных ширин, которые пропорциональны относительным вероятностям распада по соответствующим каналам. Вероятность же распада по данному каналу j будет

.

(4.9.33)

Величины Г, Гn, Гg, Гf, s0,Т0 являются параметрами конкретного резонанса. Параметры резонанса определяются экспериментально.

Резонансы называются уединенными (неперекрывающимися), если расстояние между соседними уровнями D >> Г (см. рис.1.7.1). Уединенные  резонансы описываются формулой Брейта-Вигнера, которая определяет сечение образование промежуточного возбужденного ядра на первой стадии процесса (4.2.1)

.

(4.9.34)

Здесь g - статистический (спиновый) фактор, смысл которого раскрыт в §1.6 п.1:

,

(4.9.35)

гдеJ - спин возбужденного уровня промежуточного ядра, I - спин ядра-мишени, S = 1/2 - спин нейтрона; Гn – ширина уровня по отношению к упругому рассеянию нейтрона в данном резонансе. В (4.9.35) орбитальный момент нейтрона принят равным нулю. Нейтроны с энергией меньше 10 кэВ, а именно в этом энергетическом диапазоне расположены резонансы, взаимодействуют с ядрами только с орбитальными моментами l= 0. Выражение (ТnТ0)2 в (4.9.34) определяет поведение резонанса и называется  резонансным членом.

Сечение для резонансного рассеяния нейтронов может быть найдено следующим образом, если использовать (4.9.33) и (4.9.34):

,

(4.9.36)

Аналогичным образом определяется сечение реакции (n,γ):

,

(4.9.37)

и реакции деления:

.

(4.9.38)

В области энергий, когда энергия нейтрона близка к тепловой, Гγ меняется слабо, так как определяется величиной энергии возбуждения промежуточного ядра (4.5.32)

,

(4.9.39)

а , и можно считать, что Гγ = const.

Пусть имеется неделящееся вещество. Тогда Г = Гn + Гg. Из теории преодоления нейтронoм ядерного барьера следует, что Гn ~ vn и в тепловой области энергий  Гn << Гg. Таким образом, в тепловой области ГГγ. Если Тn << Т0, то резонансный член в (4.9.34) становится постоянным числом. Тогда, используя (4.9.13), (4.9.37) и принятые выше допущения, получим

,

(4.9.40)

или

.

(4.9.41)

Следует отметить, что закон 1/vn (пунктир на рис. 4.9.3), первоначально найденный экспериментально для энергетической зависимости сечения реакции (n,γ) в области Тn << Т0, наблюдается и для ряда других реакций, таких как (n,α), (n, f ). В результате очень многие вещества захватывают тепловые нейтроны с очень большим сечением, которые могут существенно превосходить сечение резонансного рассеяния.

С ростом кинетической энергии нейтронов сечение реакции (n,γ) монотонно падает, но при приближении к первому резонансному значению Т0 начинает возрастать и при Тn = Т0 становится равным

.

(4.9.42)

Отсюда следует, что резонансы, расположенные в области тепловых энергий (большие ), например, у кадмия (рис. 4.9.1), могут иметь очень большие сечения захвата нейтронов.

Процесс упругого резонансного рассеяния (4.9.36) обычно маловероятен для тепловых нейтронов по сравнению с радиационным захватом, но с ростом энергии нейтронов его роль повышается, так как . Вместе с тем медленные нейтроны испытывают и потенциальное рассеяние без захода нейтрона в ядро.

С ростом энергии нейтронов уровни энергии составного ядра начинают перекрываться (у тяжелых ядер начиная с ~ 10 кэВ и выше). В результате составное ядро образуется с одинаковой вероятностью при любой энергии нейтронов, резонансная картина пропадает, и сечение монотонно убывает с ростом энергии нейтронов. В этой энергетической области обычно становится возможным процесс неупругого рассеяния нейтронов.

На параметры резонансов в тепловой области влияет температура окружающей среды. В формуле Брейта-Вигнера энергия нейтрона есть энергия относительного движения нейтрона и ядра. Ядра-мишени всегда участвуют в тепловом хаотическом движении и поэтому при одной и той же энергии нейтрона в ЛСК энергия относительного движения несколько больше при встречном движении и несколько меньше при одном направлении движения нейтрона и ядра. В результате не все, а только часть нейтронов с энергией Т0 взаимодействуют с ядрами, уменьшая сечение σ0. Другая же часть нейтронов имеет большую или меньшую относительную энергию и, взаимодействуя с ядрами, увеличивает сечение на крыльях резонанса. В итоге резонансный пик, сохраняя свою площадь, становится ниже и шире, что приходиться учитывать при расчете ядерных реакторов. По аналогии с оптикой изменение формы резонансного пика вследствие теплового движения ядер называется эффектом Доплера. Особенно заметно влияние эффекта Доплера на форму резонансных пиков для значений Г, имеющих близкие величины с тепловой энергией ядер среды.

Реакции под действием нейтронов