Инженерная графика
Физика
Атомные станции
Строймех
ТКМ
Начертательная геометрия
Экология энергетики
Сопромат
Готика
Черчение
Теплотехника
Математика

Театр

Конспект лекций
Атомная энергетика
Карта

Ядерная физика начало

Основные свойства деления

Рассмотрим основные свойства вынужденного деления ядер нейтронами, которое возможно, если

,

(5.2.1)

где Wc - энергия возбуждения составного ядра при захвате нейтрона, равная (4.5.32)

.

(5.2.2)

Если εn(C) > Wf, то из (5.2.1) и (5.2.2) следует, что реакция деления не имеет энергетического порога и деление возможно при любой энергии налетающего нуклона. Нуклиды, обладающие такими свойствами, называются делящимися или топливными нуклидами. Топливные нуклиды служат для производства энергии в ядерных реакторах и для ядерного оружия. Нуклиды, для которых выполняется обратное неравенство εn(C) < Wf , называются сырьевыминуклидами, так как из них возможно получение ядерного топлива. И хотя реакция деления этих ядер нейтронами является экзоэнергетической и формально не имеет энергетического порога, однако эффективно она может протекать только тогда, когда кинетическая энергия нейтронов

.

(5.2.3)

В таблице 5.2.1 приведены характеристики наиболее распространенных тяжелых нуклидов, способных делиться под действием нейтронов.

Таблица 5.2.1

Нуклид

232Th

233U

235U

238U

239Pu

Промежуточное ядро

233Th

234U

236U

239U

240Pu

Энергетический барьерWf, МэВ

5,9

5,5

5,75

5,85

5,5

Энергия связи нейтрона εn, МэВ

5,07

6,77

6,4

4,76

6,38

Из этой таблицы видно, что нуклиды 233U, 235U и 239Puявляются топливными нуклидами, а 232Th и 238U – сырьевыми. Переработка сырьевых нуклидов в топливные основана на реакции радиационного захвата нейтрона (4.9.11):

n + 232Th → γ + 233Th ,

(5.2.4)

n + 238U  → γ + .

(5.2.5)

В реакции (5.2.5) были получены первые трансурановые элементы.

В 1932 г. Андерсон обнаружил позитрон в составе космического излучения. В камере Вильсона, помещенной между полюсами электромагнита, позитрон оставлял такой же след, как и рождавшийся одновременно с ним электрон, только этот след был закручен в противоположную сторону (рис. 17.3).

Рис. 17.3.

Рождение электрон-позитронных пар происходит, в частности, при прохождении γ-фотонов через вещество. Это — один из основных процессов, приводящих к поглощению γ-лучей веществом. В полном соответствии с теорией Дирака минимальная энергия γ-фотона, при которой наблюдается рождение пар, оказывается равной 2тес2 = 1,02 МэВ (см. (17.2)). Для соблюдения закона сохранения импульса в процессе рождения пары должна участвовать еще одна частица (электрон или ядро), которая воспринимает избыток импульса γ_фотона над суммарным импульсом электрона и позитрона. Следовательно, схема рождения пары имеет вид

γ + е- → е- + е- + е+

(17.3)

либо

γ + X → X + е- + е+

(17.4)

где X — ядро, в силовом поле которого происходит рождение пары. Электрон-позитронные пары могут также возникать при столкновениях между двумя заряженными частицами, например электронами:

е- + е- → е- + е- + е- + е+

(17.5)

При аннигиляции требования закона сохранения импульса удовлетворяются тем, что возникают два (реже три) γ-фотона, разлетающихся в разные стороны (рис. 17. 4):

е- + е+ → γ + γ (+ γ).

(17.6)

Доля энергии, получаемая ядром X в ходе процесса (17.4), столь мала, что порог реакции образования пар (т. е. необходимая для этого минимальная энергия γ-фотона) практически равен 2mес2. Порог реакции (17.3) составляет 4mес2, а реакции (17.5) — 7mес2 (в последнем случае под порогом реакции подразумевается минимальная суммарная энергия сталкивающихся электронов). Таким образом, требования одновременного сохранения энергии и импульса приводят к тому, что порог реакции может оказаться заметно больше, чем суммарная энергия покоя рождающихся частиц.

Рис. 17.4.

В несколько измененном виде уравнение Дирака применимо не только к электронам, но и к другим частицам со спином, равным 1/2. Следовательно, для каждой такой частицы (например, протона и нейтрона) должна существовать античастица. По аналогии с (17.5) рождения пары протон-антипротон () или нейтрон-антинейтрон () можно было ожидать при столкновении нуклонов достаточно большой энергии. (Античастицу обозначают той же буквой, что и соответствующую ей частицу с добавлением тильды (~)).

§5.2. Основные свойства деления