Атомная физика | Физические законы механики | Термодинамика | Электричество | Магнетизм | Оптика | Молекулярная физика | Физмат.ру
Математика 1 семестр | Математика 2 семестр | Математика 3 семестр | Математика 4 семестр | Интегралы | 1 курс

Волновая оптика Квантовая оптика Колебания начало

14.5. Вынужденные колебания

Вынужденные колебания - это колебания, происходящие под действием периодического внешнего воздействия.




14.5.1. Колеблющиеся системы

В контур включен последовательно источник переменного напряжения, изменяющегося по гармоническому закону . Колебания и волны Курс лекций по физикеНа грузик m действует внешняя сила, изменяющаяся по гармоническому закону .



14.5.2. Законы движения

Закон Ома для неоднородного участка цепи:Второй закон Ньютона :
..



14.5.3. Применение законов движения

Применим законы движения к изучаемым системам:

Получим дифференциальные уравнения:

, .

Приведем уравнения к каноническому виду - делим на коэффициент при старшей производной и переносим все члены уравнения, содержащие неизвестную функцию, в левую часть:

; .



14.5.4. Введем обозначения



14.5.5. Дифференциальное уравнение, описывающее вынужденные колебания

наших двух систем будет иметь один и тот же вид:

.

 

14.5.6. Решение дифференциального уравнения

Решение дифференциального уравнения вынужденных колебаний - ξ(t) - состоит из двух слагаемых:

,

здесь ξ1(t) - общее решение однородного уравнения, т.е. уравнения с нулем в правой части (см. 14.4.5.),

ξ2(t) - частное решение неоднородного уравнения, т.е. уравнения с ненулевой правой частью - (14.5.5)

    - из (14.4.6),

здесь -    - частота затухающих колебаний.

ξ1(t) убывает с течением времени и его роль существенна при переходных процессах. Стационарное, установившееся значение ξ(t) определяется, в основном, слагаемым ξ2(t). Наша задача - найти ξ2(t).



14.5.6.1. Частное решение неоднородного уравнения

Частное решение неоднородного уравнения - ξ2(t). Ищем ξ2(t) в виде гармонической функции изменяющейся с частотой внешнего воздействия ω :

.

Первая и вторая производные от этой функции также будут гармоническими функциями, изменяющиеся с частотой ω. Значит, в уравнении 14.5.3.5, в левой его части, будет сумма трех гармонических функций одинаковой частоты, справа - гармоническая функция той же частоты, т.е. сумма трех колебаний одной частоты равна четвертому колебанию той же частоты. Задачу о сложении колебаний мы решим методом векторных диаграмм (14.3.1.), для этого и , после нахождения этих производных, запишем с помощью функции косинуса:

.



14.5.6.1.1. Векторная диаграмма

Изобразим эти колебания с помощью векторов (14.3.1.), амплитуды которых получаются после умножения на , а - ξ на ω20.

.

В отличие от (14.3.2) вправо направим вектор длиной ω20A, изображающий функцию ω20A · Cos( ωt - φ) , начальная фаза которой равна "минус фи".



14.5.6.1.2. Резонанс

Т.к. ,

то

.

Таким образом, амплитуда вынужденных колебаний изменяется с изменением частоты внешнего воздействия. При определенной частоте амплитуда достигает максимума. Это явление называется резонансом, а соответствующая частота - ωрез - резонансной. Для определения ωрез исследуем функцию A(ω) на максимум, для этого достаточно найти минимум знаменателя у выражения A(ω) . Возьмем от него производную по и приравняем к нулю:

,

откуда:

.

При 2 > ω20 резонанс отсутствует ( ωрез - мнимое число).



14.5.6.1.2.1. Амплитуда при резонансе

Амплитуда при резонансе получается при подстановке найденного выражения ωрез в формулу для A(ω).

.

При β << ω0:

.

При ω = 0 отклонение системы от положения равновесия

.

Найдем отношение Aрез / A0при условии β << ω0:

,

здесь Q - добротность.

Добротность показывает (при β << ω0 ) во сколько раз амплитуда при резонансе больше смещения при ω = 0.



14.5.6.1.2.2. Резонансные кривые

График зависимости A(ω) при различных β носят название резонансных кривых.

β1 < β2 < β3,    23 > ω20, в этом случае резонанса нет.


Со временем обнаружилось, что при переходе к высоким скоростям, измеряемым десятками, сотнями и более километров в секунду, свойственным движению микрочастиц, формулы Максвелла дают весьма ощутимые отклонения от эксперимента. Теория явно требовала усовершенствования, доработки.

Однако наука, благодаря усилиям некоторых ученых, сошла с прямого пути и занялась поисками произвольных постулатов, способных подогнать новые факты к устаревшим гипотезам. Гносеологическое направление в науке, согласно которому чистому мышлению доступно познание действительности, берущее свое начало от Платона, получило во II половине XIX столетия дальнейшее развитие в трудах Маха, Пуанкаре, а позднее и Эйнштейна [1].

 

В опытах Майкельсона и его последователей интерферометр двигался вместе с Землей и все его части, включая излучатель света, оставались взаимно неподвижными. Делать из этих опытов выводы, относящиеся к движущимся источникам и приемникам, было недопустимо, если только не признавать заранее и безоговорочно эфирно-волновую теорию света. Поэтому, чтобы согласовать результаты непосредственных наблюдений с общепризнанной гипотезой Фитцджеральд предложил считать опыт Майкельсона доказательством поразительного факта: не скорость света зависит от скорости его излучателя, а размеры всех тел зависят от скорости их движения относительно наблюдателя. Эту гипотезу обосновал своей электронной теорией Лоренц, а Пуанкаре на ней построил новую теорию относительности, резко отличную от теории Ньютона.

Позднее все эти абстрактные рассуждения, принимаемые за реальность, вылились в форму второго постулата Эйнштейна: «Скорость света в любой координатной системе одинакова и не зависит от движения в ней его источника». По существу это было следствием гипотезы Фитцджеральда, но очень скоро следствием стали считать предположение Фитцджеральда, а постулат Эйнштейна приняли за основу новой теории относительности Эйнштейна, оформление которой он завершил в 1905 году [3] и о которой еще в 1914 году профессор О.Д. Хвольсон сказал, что «неслыханная парадоксальность» является ее «особенно характерной чертой!» [4].

Парадоксальность, противоречащая здравому смыслу, стала, по словам А. Тяпкина, чуть ли не синонимом научности, прогрессивности и моды. Парадоксальную форму приобрели определения пространства и времени, массы и скорости, причинности и последовательности. Аналогичными мотивами руководствуются и некоторые ученые, все более усложняя свой математический аппарат.

После распространения релятивизма, в том числе и на другие науки, второй постулат Эйнштейна превратился в штатный «критерий научности» для любого нового предложения или гипотезы: правильным и доказанным считается только такое высказывание, которое не противоречит второму постулату Эйнштейна и выводам из него, хотя сам он никем не доказан ни теоретически, ни экспериментально.

Если бы опыту Майкельсона с самого начала было дано правильное толкование по Максвеллу, то следовало бы, что скорость света в пустоте складывалась со всякой другой скоростью, участвующей в данном явлении, по правилам векторной алгебры! Как выразился академик Л.И. Мандельштам [5], при этом «...все могло бы быть в порядке» и не нужны были бы ни искусственные преобразования Лоренца, ни вся теория относительности Эйнштейна. Но почему-то никаких практических выводов из этого дельного замечания академик не сделал! Он просто констатировал, что второй постулат Эйнштейна не доказан и что «...мы исходим из него, не требуя доказательств», то есть антинаучно, А он является краеугольным камнем теории относительности!

Ошибочное толкование опытов Майкельсона и его последователей заставило многих физиков искать совместное решение знаменитых уравнений Максвелла с постулатом Фитцджеральда (он же - второй постулат Эйнштейна) и именно этот постулат, а не опыт Майкельсона, послужил причиной релятивизации понятий пространства и времени.

Рассмотрим более подробно классическую теорию относительности.

14.5. Вынужденные колебания

Эффект Штарка Суть эффекта сводится к расщеплению спектральных линий испускания при воздействии сильного электрического поля на источник излучения. Поле может быть либо внешним по отношению к источнику, либо внутренним, создаваемым соседними атомами или ионами. Эффект назван по имени Й.Штарка, впервые наблюдавшего его в 1913. Он аналогичен эффекту, обнаруженному П.Зееманом в 1896 и состоящему, как было выяснено, в расщеплении спектральных линий магнитным полем. Эффект Штарка обусловлен тем, что под действием электрического поля облако электронов, окружающих ядро излучающего атома, изменяет свое положение относительно ядра. В результате изменяются энергетические уровни электронов в атоме. Поскольку свет испускается при переходе электрона с одного энергетического уровня на другой, изменение энергетических уровней приводит к изменению спектра испускаемого света.