Атомная физика | Физические законы механики | Термодинамика | Электричество | Магнетизм | Оптика | Молекулярная физика | Физмат.ру
Математика 1 семестр | Математика 2 семестр | Математика 3 семестр | Математика 4 семестр | Интегралы | 1 курс

Волновая оптика Квантовая оптика Колебания начало

15.3. Волновое уравнение


15.3. Волновое уравнение

Применяя второй закон Ньютона к упругой среде, можно получить дифференциальное уравнение в частных производных, решением которого будет уравнение волны. Логическая схема этого вывода такова: Проиллюстрируем один из вариантов метода фазовой плоскости на примере анализа цепи с туннельным диодом



15.3.1. Вывод закона Гука для бесконечно малого упругого стержня

Выделим элемент упругого стержня, длиной Δx.

Закрепим левую часть этого элемента (второй рисунок), правую сместим на величину Δξ вдоль оси x.

- закон Гука.

Здесь коэффициент kупр, характеризующий упругость стержня, зависит от материала стержня, его длины и площади сечения.

15.3.1.1. Нормальное напряжение и относительная деформация

Введем:

     - нормальное напряжение,

       - относительная деформация.

При Δx → 0

.

Перепишем , выразив F и Δξ через σ и ε :

или

.


15.3.1.2. Модуль Юнга

Величина не зависит от длины и сечения стержня, она определяется только упругими свойствами материала, ее называют модулем Юнга материала:

.


15.3.1.3. Закон Гука

Тогда связь нормального напряжения σ и относительной деформации ε будет иметь вид:

.

Это выражение тоже носит название закона Гука.


15.3.2. Вывод волнового уравнения из .

Пусть волна распространяется вдоль упругого стержня. Рассмотрим элемент этого стержня, его длина равна Δx в невозмущенном состоянии. Пусть при распространения волны левая часть этого элемента сместится на величину ξ(x), а правая - на величину ξ(x + Δx), не равную смещению левой части.

.

В нашем примере стержень растянут внешними силами:

Сумма этих сил равна:

.

Домножим и поделим последнее выражение на Δ x. Величина

при Δx → 0 дает вторую производную от "кси" по x, т.е. .

Тогда .

Масса нашего элемента , его ускорение (3.10)

,

тогда преобразуется в

,

или

   - волновое уравнение.

Проверим, будет ли его решением.

Откуда

.

Т.к. (15.2.4), то фазовая скорость упругой продольной волны:

,

и волновое уравнение можно записать в виде:

.

Для волны, распространяющейся в произвольном направлении (15.2.5) волновое уравнение имеет вид:

.


Мы получим выражение для доплеровского смещения и ожидаемое соотношение между значениями скорости света в двух системах отсчета. То обстоятельство, что скорость получается разной, уже само по себе указывает на нековариантность уравнений электромагнитного поля по отношению к преобразованию Галилея».

Автор приведенной цитаты здесь допускает две ошибки:

Во-первых, поскольку в исходное задание был внесен закон Галилея и в дальнейших преобразованиях не исключен, то он же неизбежно сохранился и в конечном решении. Ничего другого и быть не могло.

Во-вторых, получение разных скоростей света относительно резных координатных систем только подтверждает правильность классического закона сложения скоростей, вытекающего из системы преобразования координат Галилея и неоднократно, со скрупулезной точностью проверенного как на земных установках, так и в космических условиях. Наоборот, утверждение М. Боулера о том, что скорость света «...является универсальной константой, единой для всех неускоренных наблюдателей» никем не доказано и является логической ошибкой Майкельсона и его последователей».

Вывод, подобный изложенному, можно получить в более общем виде, обращаясь непосредственно к уравнениям Максвелла, нековариантность которых к преобразованиям Галилея считается несомненной. Покажем, что это не так, что нековариантность заложена не в самих уравнениях, а в тех произвольных искажениях, которым они были подвергнуты уже после смерти их автора некоторыми учеными.

Напишем первую группу уравнений Максвелла в том виде, как он писал ее сам в своем «Трактате» [9], заменив лишь его обозначения современной символикой.

  (11)

Здесь обозначено: B - магнитная индукция, E - напряженность электрического поля; обе величины являются функциями от четырех аргументов x, y, z и t.

Такими же буквами с индексами x, y, z обозначены проекции этих величин на координатные оси.

 - электродинамическая постоянная, численно равная скорости света в пустоте относительно его источника, но физически ей не тождественная.

Заменяя в системе (11) проекции B и E их выражениями через соответствующие орты Bx = iB, By = jB, Bz = kB, получим после векторного сложения в левой части ротор напряженности электрического поля, а в правой части - полную производную магнитной индукции. Следовательно, система уравнений (11) преобразуется в одно:

  (12)

Точно такое же уравнение Максвелла в дифференциальной форме выводит Э. Парселл во II томе «Берклеевского курса физики» [10], исходя из его интегральной формы

Он показывает, что уравнение (12) является следствием этого последнего уравнения. Но логика следующего далее утверждения того же Э. Парселла совершенно парадоксальна, он пишет буквально следующее:

«Так как B может зависеть от положения и от времени, то мы напишем  вместо ». Никаких иных пояснений или доказательств к этому неожиданному заявлению не дается. Да их и не может быть! Зная зависимость B (как и E) от четырех аргументов x, y, z и t, о чем беспристрастно Э. Парселл пишет на странице 245 своей книги [10], предлагается исключить из рассмотрения три из них и оставить только один и именно тот, который в предыдущем математическом анализе явно не фигурировал, а совершенно произвольно внесен в последний момент!

В других курсах релятивистской физики такой прием лучше замаскирован. Приведем лишь некоторые наиболее известные и распространенные источники.

Р. Фейнман в своих «Фейнмановских лекциях по физике» рассматривает формулы электромагнитного поля с частными производными по времени, называя их не уравнениями Максвелла-Герца, как Эйнштейн, а уравнениями Максвелла, хотя, как было показано выше, Максвелл, следуя Фарадею, использовал в них полные производные. Р.Фейнман пишет [11]:

«Однако уравнения Максвелла, по-видимому, не подчиняются принципу относительности: если их преобразовать подстановкой (Галилея - С.Б., М.В.), то их вид не останется прежним». Но Р. Фейнман мог бы сделать совершенно другой вывод, если бы он рассматривал уравнения электромагнитного поля именно в форме Максвелла!

15.3. Волновое уравнение

Эффект Штарка Суть эффекта сводится к расщеплению спектральных линий испускания при воздействии сильного электрического поля на источник излучения. Поле может быть либо внешним по отношению к источнику, либо внутренним, создаваемым соседними атомами или ионами. Эффект назван по имени Й.Штарка, впервые наблюдавшего его в 1913. Он аналогичен эффекту, обнаруженному П.Зееманом в 1896 и состоящему, как было выяснено, в расщеплении спектральных линий магнитным полем. Эффект Штарка обусловлен тем, что под действием электрического поля облако электронов, окружающих ядро излучающего атома, изменяет свое положение относительно ядра. В результате изменяются энергетические уровни электронов в атоме. Поскольку свет испускается при переходе электрона с одного энергетического уровня на другой, изменение энергетических уровней приводит к изменению спектра испускаемого света.