Атомная физика | Физические законы механики | Термодинамика | Электричество | Магнетизм | Оптика | Молекулярная физика | Физмат.ру
Математика 1 семестр | Математика 2 семестр | Математика 3 семестр | Математика 4 семестр | Интегралы | 1 курс

Волновая оптика Квантовая оптика Колебанияначало

 

17. ГЕОМЕТРИЧЕСКАЯ ОПТИКА

 

Это приближенное рассмотрение распространения света в предположении, что свет распространяется вдоль некоторых линий - лучей (лучевая оптика). В этом приближении пренебрегают конечностью длин волн света, полагая, что λ → 0.

Геометрическая оптика позволяет во многих случаях достаточно хорошо рассчитать оптическую систему. Но в ряде случаев реальный расчет оптических систем требует учета волновой природы света, расчет в рамках геометрической оптики дает приближенный результат, иногда неверный даже на качественном уровне.
Теплоемкость вещества. Изопроцессы идеального газа Большую роль в изучении тепловых свойств вещества играет понятие теплоемкости. Удельной теплоемкостью с называется физическая величина, численно равная количеству теплоты, которое надо сообщить единице массы этого вещества для увеличения ее температуры на 1° К

17.1. Законы геометрической оптики

17.1.1. Закон прямолинейного распространения света

Закон прямолинейного распространения света утверждает, что в однородной среде свет распространяется прямолинейно.

Если среда неоднородна, т.е. ее показатель преломления изменяется от точки к точке, или , то свет не будет распространяться по прямой.

При наличии резких неоднородностей, таких как отверстия в непрозрачных экранах, границы этих экранов, наблюдается отклонение света от прямолинейного распространения.

17.1.2. Закон независимости световых лучей

утверждает, что лучи при пересечении не возмущают друг друга. При больших интенсивностях этот закон не соблюдается, происходит рассеяние света на свете.

17.1.3. Законы отражения и преломления

утверждают, что на границе раздела двух сред происходит отражение и преломление светового луча. Отраженный и преломленный лучи лежат в одной плоскости с падающим лучом и перпендикуляром, восстановленным к границе раздела в точке падения.

Угол падения равен углу отражения.

Отношение синуса угла падения к синусу угла преломления равно отношению показателя преломления (16.5.2) второй среды к показателю преломления первой.

Законы отражения и преломления могут нарушаться в анизотропных средах, т.е. средах, для которых показатель преломления зависит от направления в пространстве.

17.2. Полное внутреннее отражение

При увеличении угла падения i, угол преломления тоже увеличивается, при этом интенсивность (16.5.4) отраженного луча растет, а преломленного - падает (их сумма равна интенсивности падающего луча). При каком-то значении i = iкр угол r = π/2, интенсивность преломленного луча станет равной нулю, весь свет отразится. При дальнейшем увеличении угла i > iкр преломленного луча не будет, происходит полное отражение света.

Значение критического угла падения, при котором начинается полное отражение найдем, положим в законе преломления r = π/2, тогда Sin r = 1, значит:

.

17.3. Тонкие линзы

Линза - система двух, чаще всего сферических, преломляющих поверхностей, ограничивающих прозрачное тело. Обычно линзы делают стеклянными.

17.3.1. Собирающие и рассеивающие линзы

Линзы бывают собирающими и рассеивающими.

 

    
Собирающая линза в средней части толще и отклоняет лучи к оптической оси, если показатель преломления линзы больше показателя преломления среды.

 

    Рассеивающая линза в средней части тоньше и отклоняет лучи от оптической оси.

 

Объясните такой ход лучей в линзах, применяя закон преломления.

Линза называется тонкой, если ее толщиной можно пренебречь. Схематически тонкая собирающая линза

изображается так:
 
а рассеивающая так:
 



17.3.2. Фокусы линзы, фокальная плоскость

БуквойF обозначены фокусы линзы - точки, в которых собираются параллельные оптической оси лучи, прошедшие через линзу (или их продолжения).



17.3.3. Фокусное расстояние тонкой линзы

Буквой F обозначают также и фокусное расстояние линзы - расстояние от фокуса до оптического центра линзы.

Для сферической тонкой линзы на основе закона преломления получается следующая формула для фокусного расстояния:

.

Здесь nл и nср - показатели преломления линзы и среды, соответственно.
R1 и R2 - радиусы кривизны линзы, они - величины алгебраические.

Эта формула справедлива только для приосевых (параксиальных) лучей.

R1, R2 - радиусы кривизны сферических поверхностей линзы могут быть положительными и отрицательными. Радиус кривизны выпуклой поверхности линзы считается положительным, вогнутый - отрицательным.

Выбор знаков R1 и R2 в приведенной нами формуле для F иллюстрируют следующие рисунки [Следует отметить, что существует и другое, более формальное правило знаков.]):

Для собирающей линзы фокусное расстояние F положительно, для рассеивающей - отрицательно. Оптической силы линзы называют величину Ф, обратную фокусному расстоянию линзы:

,

Единица оптической силы - диоптрия (дтпр).

.

17.3.4. Построение изображения в линзах

Для построения изображения предмета необходимо построить изображение каждой его точки.

Для построения изображения точки достаточно найти точки пересечение двух любых лучей идущих из заданной точки.

Удобнее всего использовать в качестве одного из этих лучей луч, идущий через оптический центр, он идет через линзу не отклоняясь:

Другой удобный луч - идущий параллельно оптической оси. Он, преломляясь в линзе, проходит через фокус, если линза собирающая:

Если линза рассеивающая, то через фокус проходит продолжение луча:

И, если луч шел через фокус собирающей линзы, то после преломления он пойдет параллельно оптической оси:

Для рассеивающей линзы параллельно оптической оси пойдет после преломления луч, продолжение которого проходит через фокус:



17.3.4.1. Примеры построения изображения точки в собирающей линзе





17.3.4.2. Пример построения изображения точки в рассеивающей линзе



17.3.5. Формула линзы

ΔABO подобен ΔA'B'O, значит:

.

ΔOCF подобен ΔA'B'F, значит:

,     следовательно:    ,

освободимся от знаменателя:

,

поделим на d f F, тогда:

,

или

,

откуда следует формула тонкой линзы:

.

Здесь d, f, F - алгебраические величины.


К таким же выводам можно придти, сравнив математическую корректность уравнений Галилея и уравнений Лоренца. Первые вытекают непосредственно из определения декартовых координат и элементарной геометрии Евклида. Они не подлежат никакому сомнению. Для перехода же к группе Лоренца нам потребовалось бы ввести во все правые (и только правые) части уравнений Галилея произвольный множитель 1/, где  = vi/c зависит от относительной скорости тела и источника света vi и от направления их движения, i = 1, 2, 3. Этот множитель сохраняет свое вещественное значение только в пределах . На границе значения  = 1 он обращается в бесконечность, а при >1 становится мнимым. Соответствующая величина перестает существовать, а скорости, большие скорости света, вытесняются в небытие.

Так создается видимость математического обоснования теории относительности Эйнштейна и вводится в заблуждение мировая общественность и научные учреждения. Хотя недопустимость подобной операции хорошо известна любому школьнику средних классов!

Герц и Хевисайд могли ограничиться в правой части уравнений Максвелла только частными производными по времени потому, что имели дело с практически неограниченными, однородными пространствами, свободными от неравномерно распределенных и движущихся парамагнитных тел. При этом частные производные по координатам были достаточно малы, а малость скоростей движения зарядов также уменьшала их влияние. Такие уравнения могут применяться в стационарных трансформаторах и других установках, не имеющих движущихся намагниченных частей.

Чаще в технике применяются устройства, в которых можно скорее пренебречь частными производными по времени, чем по координатам, когда магнитное поле в целом остается стационарным, но связано с магнитными элементами сложной формы, вдоль которых движутся проводники, несущие ток. В таком случае в уравнениях Максвелла должны быть сохранены полные производные от магнитной индукции и электрической напряженности поля. Практически это и соблюдается во всех промышленных расчетах по технике сильного тока.

Однако пользование формулами Максвелла в их натуральном виде довольно сложно. Значительное упрощение может быть достигнуто только в стационарных условиях, когда в формуле (14) частную производную по времени от магнитной индукции можно приравнять к нулю. При этом следует выбрать такую систему координат, в которой ось Oz совпадает с направлением силовых линий поля, а вектор относительного движения зарядов лежит в плоскости OXY. Тогда получим: сх = с, су = сz = 0, vx = v cos(j), vy = v cos(j) и vz = 0. Здесь через j обозначен угол между векторами с и v.

При этом расчет скорости света относительно любой координатной системы сведется к одному равенству, выведенному более просто уже ранее (5):

c/ =  = c

Направляющий угол Ψ между результирующей скоростью с/ и исходной c найдется по обычному тригонометрическому соотношению:

  (22)

Практическая проверка приведенных формул была показана С.А. Базилевским в более ранних работах на анализе результатов семнадцати серий разнородных экспериментов и наблюдений. В их число вошли и такие капитальные труды, как измерения скорости солнечного и радиолуча в межпланетном пространстве, выполненные А.М. Бонч-Бруевичем и В.А. Молчановым (1727 измерений), а также обработка радиолокационных наблюдений Венеры Б.Г. Уоллесом (1961 измерение). При сравнении с эмпирическими данными результаты расчетов по классическим формулам всегда оказывались более точными, чем при расчетах по формулам Эйнштейна. Особенно характерна в этом отношении диаграмма, помещенная Б.Г. Уоллесом в его статье [17]. На ней показано, что результаты радиолокационных наблюдений Венеры, обработанные по законам Ньютона, и вычислений, сделанных по его же теоретическим формулам, идеально совпадают, в то время как подобные операции, выполненные по методам Эйнштейна, дают расхождения, в 170 раз превышающие возможную ошибку наблюдений и вычислений! Практика XX века совершенно четко и бесспорно показала, что II постулат Эйнштейна противоречит действительности, что он должен быть отвергнут и забыт. А в таком случае невозможно существование и всей теории относительности Эйнштейна.

Совместное влияние принципа относительности Галилея, теории Ньютона, основных законов аналитической геометрии, уравнений Максвелла и все проделанные в разное время и разными лицами эксперименты создали систему доказательств, превративших теорию относительности классической физики в совершенно несокрушимую крепость.

Таким образом, те ошибки, в которых заподозрили классическую физику Лоренц, Пуанкаре и Эйнштейн, оказались ошибками их собственного мышления и результатом неправильного толкования первых опытов в новой области сверхвысоких скоростей и энергий. Наша задача - исправление этих ошибок и их последствий.

Эта работа, к счастью, не будет слишком обременительной, так как погрешности, внесенные теорией относительности Эйнштейна, в подавляющем большинстве практически интересных случаев не превышают тысячных долей процента. Их можно и не исправлять. Но возврат к классической физике необходим в новых работах, что повысит точность и авторитетность их результатов.

Литература.

1. Гернек Ф. Альберт Эйнштейн. М., Мир, 1979, с. 112.

2. Вавилов С.И. Собрание соч. М., изд. АН СССР, 1956, т. 4, с. 61.

3. Эйнштейн А. Собрание научных трудов. М., Наука, 1965, т. 1, с. 7.

4. Xвольсон О.Д. Принцип относительности. СПб, 1914, с. 8.

5. Мандельштам Л.И. Лекции по оптике, теории относительности и квантовой механике. М., Наука, 1972, с. 134.

6. Ньютон И. Математические начала натуральной философии. В кн.: Собрание трудов академика А. Н. Крылова. М.-Л., изд. АН СССР, 1936, т. 7.

7. Угаров В.А. Специальная теория относительности. М., Наука, 1969.

8. Боулер М. Гравитация и относительность. М., Мир, 1979, с. 16.

9. Максвелл Д.К. Избранные сочинения электромагнитного поля. М, Гостехиздат, 1954, с. 486.

10. Парселл Э. Берклеевский курс физики. М., Наука, 1975, т. 2, с. 245.

11. Фейнман Р. Фейнмановские лекции по физике. Кн. 2, М., Мир. 1965, с. 7.

12. Фриш С.Э. и Тиморева А.В. Курс общей физики, т. 2, М., Изд. техн.-теорет. лит., 1957.

13. Карякин Н.И., Быстров К.Н., Киреев П.С. Краткий справочник по физике. М., Высшая школа, 1964, с. 230.

14. Ливанова А. Физики о физиках. М., Молодая гвардия, 1968, с. 43.

15. Hertz Н. Uber die Beziehungen zwischen ben Maxwellschen electro-dynamischen Grundgleichungen und den Grundgleichungen der gegnerischen Electrodynamik. Ann Phys., 1884, Bd. 25, s. 84 - 103.

16. Heaviside O. Electrical Papers. L., 1892, vol. 1, p. 429 - 451.

17. Wallace B.G. Spectroscopy Letters, 1969, 2 (12), p. 361 - 367.

17. ГЕОМЕТРИЧЕСКАЯ ОПТИКА

Эффект Штарка Суть эффекта сводится к расщеплению спектральных линий испускания при воздействии сильного электрического поля на источник излучения. Поле может быть либо внешним по отношению к источнику, либо внутренним, создаваемым соседними атомами или ионами. Эффект назван по имени Й.Штарка, впервые наблюдавшего его в 1913. Он аналогичен эффекту, обнаруженному П.Зееманом в 1896 и состоящему, как было выяснено, в расщеплении спектральных линий магнитным полем. Эффект Штарка обусловлен тем, что под действием электрического поля облако электронов, окружающих ядро излучающего атома, изменяет свое положение относительно ядра. В результате изменяются энергетические уровни электронов в атоме. Поскольку свет испускается при переходе электрона с одного энергетического уровня на другой, изменение энергетических уровней приводит к изменению спектра испускаемого света.