Физика основные формулы и примеры решения задач

Машиностроительное черчение
Единая система конструкторской
документации
Машиностроительные построения
Инженерная графика
Сборочный чертеж
Начертательная геометрия
Геометрические основы
построения чертежа
Конспект лекций по начертательной
геометрии
История искусства
Стили в искусстве Готика
Русский балетный театр
Русское изобразительное искусство
ТКМ
Материаловедение
Основы теории сплавов
Теория конструктивных материалов
Сопромат
Сопративление метериалов
Лабораторные работы
Задачи строительной механики
Лекции физика
Физика
Электричество
Магнетизм
Оптика
Электромагнетизм
Молекулярная физика
Лекции МАИ
Лекции МАИ часть 2
Диэлектрики
Квантовая механика
Физические законы механики
Электромагнитное взаимодействия
Атомные станции
Атомная энергетика
Экология энергетики
Атомная и ядерная физика
Теплотехника
Термодинамика
Билеты к экзамену по физике
Задачи физика электротехника
Решение задач по ядерной физике
Электростатика
Геометрическая оптика
Тепловое излучение
Основы теории сплавов
Теория относительности
Физические основы механики
Законы идеальных газов
Электростатика
Основы электротехники
Постоянный ток
Электромагнетизм
Оптика
Законы теплового излучения
Ядерная физика
Строение атома и молекул
Задачи математика
Математика
1 семестр
2 семестр
3 семестр
4 семестр
Интегралы
Лекции по высшей математике
Вычисление площадей в
декартовых координатах
Аналитическая геометрия
 
Информатика
Восстановление сети после аварии
Основные понятия и категории
информатики
Сетевые операционные системы

КИНЕМАТИКА Основные формулы

Положение материальной точки в пространстве задается радиусом-вектором г:

 


где i, j, k единичные векторы направлений (орты); х, у, z координаты точки.

Кинематические уравнения движения в координатной форме:

 

где t время.

• Средняя скорость

где  — перемещение материальной точки за интервал времени .

Средняя путевая * скорость

 

где  — путь, пройденный точкой за интервал времени.

Мгновенная скорость

где — проекции скорости v на оси координат.

Модуль скорости

 

• Ускорение

 

где проекции ускорения a на оси координат.

Пример 1.Кинематическое уравнение движения материальной точки по прямой (ось х) имеет вид x=A+Bt+Ct3, где A>=4 м, B=2 м/с, С=-0,5 м/с2. Для момента времени t1>=2 с определить:

1) координату x1 точки,

2) мгновенную скорость v>1,

3) мгновенное ускорение a1.

Пример 2.Кинематическое уравнение движения материальной точки по прямой (ось х) имеет вид, x=A+Bt+Ct2, где A>=5 м, B=4 м/с, С=-1 м/с2. Построить график зависимости координаты х и пути s> от времени. 2. Определить среднюю скорость <vx> за интервал времени от t1=1 с до t2=6 с. 3. Найти среднюю путевую скорость <v> за тот же интервал времени.

ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ И ТЕЛА, ДВИЖУЩИХСЯ ПОСТУПАТЕЛЬНО

Пример 1. К концам однородного стержня приложены две про­тивоположно направленные силы: F1=40H и F2=100 H

Пример 2. В лифте на пружинных весах находится тело массой т=10 кг . Лифт движется с ускорением а=2 м/с2. Определить показания весов в двух случаях, когда ускорение лифта направлено: 1) вертикально вверх, 2) вертикально вниз.

Пример 3. При падении тела с большой высоты его скорость vуст установившемся движении достигает 80 м/с. Определить время , в течение которого начиная от момента начала падения скорость становится равной 1/2ст. Силу сопротивления воздуха принять пропорциональной скорости тела.

Пример 4. Шар массой m=0,3 кг, двигаясь со скоростью v=10 м/с, упруго ударяется о гладкую неподвижную стенку так, что скорость его направлена под углом   =30° к нормали. Определить импульс р, получаемый стенкой.

Пример 5. На спокойной воде пруда стоит лодка длиной L и массой М перпендикулярно берегу, обращенная к нему носом. На корме стоит человек массой т. На какое расстояние s приблизится лодка к берегу, если человек перейдет с кормы на нос лодки? Трением о воду и воздух пренебречь.

Пример 6. Два шара массами m1=2,5 кг и m2==1,5 кг движутся навстречу друг другу со скоростями v1=6 м/с и v>2=2 м/с. Определить: 1) скорость и шаров после удара; 2) кинетические энергии

Пример 7. Из пружинного пистолета был произведен выстрел вертикально вверх. Определить высоту h, на которую поднимается пуля массой m 95%'>= 20 г, если пружина жесткостью k = 196 Н/м была сжата перед выстрелом на х = 10 см. Массой пружины пренебречь.

РЕЛЯТИВИСТСКАЯ МЕХАНИКА.

Пример 1. Космический корабль движется со скоростью υ=0,9 с по направлению к центру Земли. Какое расстояние l прой­дет этот корабль в системе отсчета, связанной с Землей (K-система), за интервал времени Δt0=1 с, отсчитанный по часам, находя­щимся в космическом корабле (K'-система)? Суточным вращением Земли и ее орбитальным движением вокруг Солнца пренебречь.

Пример 2. В лабораторной системе отсчета (K-система) движется стержень со скоростью υ=0,8 с . По измерениям, произведенным в системе, его длина l оказалась равной 10 м, а угол φ, который он составляет с осью х, оказался равным 30° . Определить собственную длину l стержня в K-системе, связанной со стержнем, и угол φ0, который он составляет с осью х'

Пример 3. Кинетическая энергия Т электрона равна 1 МэВ. Определить скорость электрона.

Пример 4. Определить релятивистский импульс р и кинетическую энергию Т электрона, движущегося со скоростью υ =0,9 с (где с — скорость света в вакууме).

Пример 5. Релятивистская частица с кинетической энергией T=т0c2 (m0 — масса покоя частицы) испытывает неупругое столк­новение с такой же покоящейся (в лабораторной системе отсчета) частицей. При этом образуется составная частица. Определить: 1) релятивистскую массу т движущейся частицы; 2) релятивистскую массу т' и массу покоя m0' составной частицы; 3) ее кинетическую энергию Т'.

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ Основные формулы

Пример 2. Материальная точка массой т=5 г совершает гармонические колебания с частотой ν =0,5 Гц.
Амплитуда колебаний
A=3 см.

Пример 3. На концах тонкого стержня длиной l = 1 м и массой m3=400 г укреплены шарики малых размеров массами m1=200 г и m2=300г. Стержень колеблется около горизонтальной оси, перпендикулярной стержню и проходящей через его середину (точка О на рис. 6.2). Определить период Т колебаний, совершаемых стержнем.

Пример 4. Физический маятник представляет собой стержень длиной l= 1 м и массой 3т1 с прикрепленным к одному из его концов
обручем диаметром и массой т1. Горизонтальная ось Ozмаятника проходит через середину стержня перпендикулярно ему .
Определить период Т колебаний такого маятника.

Найти амплитуду А и начальную фазу результирующего колебания. Написать уравнение результирующего колебания.

Пример 6. Материальная точка участвует одновременно в двух взаимно перпендикулярных гармонических колебаниях,

Найти уравнение траектории точки. Построить траекторию с соблюдением масштаба и указать направление движения точки.

ВОЛНЫ В УПРУГОЙ СРЕДЕ. АКУСТИКА Основные формулы

Пример 1. Поперечная волна распространяется вдоль упругого шнура со скоростью =15 м/с. Период Т колебаний точек шнура равен 1,2 с, амплитуда A=2 см.

Определить:

Пример 2.На расстоянии l=4 м от источника плоской волны частотой v=440 Гц перпендикулярно ее лучу расположена стена. Определить расстояния от источ­ника волн до точек, в которых будут первые три узла и три пучности стоячей волны, возникшей в результате сложения бегущей и отраженной от стены волн. Скорость J волны считать равной 440 м/с.

Пример3. Источник зву­ка частотойi>v=18 кГц приб­лижается к неподвижно уста­новленному резонатору, на­строенному на   акустическую волну длиной l= 1,7 см. С ка­кой скоростью должен дви­гаться источник звука, чтобы возбуждаемые им звуковые волны вызвали колебания резонатора? Температура T воздуха равна 290 К.