КИНЕМАТИКА Основные формулы Задачи

§ 4. СИЛЫ В МЕХАНИКЕ

Основные формулы

• Закон всемирного тяготения

где F — сила взаимного притяжения двух материальных точек; m1 и m2 — их массы; r — расстояние между точками; G — гравита­ционная постоянная.

В написанной форме закон всемирного тяготения можно приме­нять и к взаимодействию шаров, масса которых распределена сфери­чески-симметрично. В этом случае r есть расстояние между центра­ми масс шаров.

• Напряженность гравитационного поля

где F — сила тяготения, действующая на материальную точку массы m, помещенную в некоторую точку поля.

• Напряженность гравитационного поля, создаваемого плане­той, массу М которой можно считать распределенной сферически-симметрично,

где r — расстояние от центра планеты до интересующей нас точки поля, находящейся вне планеты.

• Ускорение свободного падения на высоте h над поверхно­стью Земли

где R — радиус Земли; g — ускорение свободного падения на по­верхности Земли. Если, то

• Потенциальная энергия гравитационного взаимодействия двух материальных точек массами m1 и m2 (шаров с массой, распре­деленной сферически симметрично), находящихся на расстоянии r друг от друга,

(Потенциальная энергия бесконечно удаленных друг от друга ма­териальных точек принята равной нулю.)

• Потенциал гравитационного поля

где П — потенциальная энергия материальной точки массой m, помещенной в данную точку поля.

• Потенциал гравитационного поля, создаваемого планетой, массу М которой можно считать распределенной сферически-сим­метрично,

 

где r — расстояние от центра планеты до интересующей нас точки поля, находящейся вне планеты.

• Законы Кеплера.

1. Планеты движутся по эллипсам, в одном из фокусов которых находится Солнце.

2. Радиус-вектор планеты в равные времена описывает одинако­вые площади.

3. Квадраты периодов обращения любых двух планет относятся как кубы больших полуосей их орбит:

Законы Кеплера справедливы также для движения спутников вокруг планеты.

• Относительная деформация при продольном растяжении или сжатии тела

где ε — относительное удлинение (сжатие); x — абсолютное удли­нение (рис. 4.1); l — начальная длина тела.


Относительная деформация при сдвиге определяется из формулы

Рис. 4.1 Рис. 4.2

 

где — относительный сдвиг; Δs — абсолютный сдвиг параллель­ных слоев тела относительно друг друга (рис. 4.2); h — расстояние между- слоями; — угол сдвига. (Для малых углов)

• Напряжение нормальное

где Fynp — упругая сила, перпендикулярная поперечному сечению тела; S — площадь этого сечения.

Напряжение тангенциальное

где Fynp — упругая сила, действующая  вдоль слоя тела; S — площадь этого слоя.

• Закон Гука для продольного растяжения или сжатия

 или ,

где k — коэффициент упругости (в случае пружины — жесткость); Е — модуль Юнга.

Закон Гука для сдвига

 , или ,

где G — модуль поперечной упругости (модуль сдвига).

• Момент, закручивающий на угол φ однородный круглый стер­жень,

,

где С — постоянная кручения.

• Работа, совершаемая при деформации тела,

• Потенциальная энергия растянутого или сжатого стержня

 , или  , или ,
где V — объем тела.

Записанная формула выражает теорему о движении центра масс механической системы материальных точек: главный вектор внешних сил равнее произведению массы системы материальных точек на ускорение ее центра масс.

Импульс материального тела:

Умножим данное уравнение на массу тела:

,

величина  есть скорость центра масс.

  - радиус вектор центра масс материального тела.

;

Импульс материального тела равен произведению массы материального тела на скорость его центра масс:

.

Отсюда:

, но  – ускорение центра масс. Следовательно:

Используя теорему об изменении импульса материального тела:

, где.

  – о теорема о движении центра масс: произведение массы материального тела на ускорение его центра масс равно сумме всех внешних сил, действующих на материальное тело.

Если мы имеем систему N материальных тел, то теорема о движении центра масс также справедлива:

, где ; .

Однако радиус-вектор центра масс и главный вектор внешних сил определяется по формулам:

,

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Сопротивление материалов является одним из разделов механики деформируемого твердого тела и посвящено изучению инженерных методов расчета на прочность, жесткость и устойчивость деталей машин и элементов сооружений. Под прочностью понимают способность детали выдерживать действие внешней нагрузки без разрушения. Жесткость – это способность детали сопротивляться изменению первоначальных размеров. Для некоторых видов деталей жесткость связана с устойчивостью, то есть способностью детали сохранять определенную первоначальную форму равновесия.