Строймех
Сопромат
Математика

Театр

Карта

Термодинамика Основные формулы Термодинамика

ЭЛЕМЕНТЫ СТАТИСТИЧЕСКОЙ ФИЗИКИ

· Распределение Больцмана (распределение частиц в силовом поле)

n=n0e-U/(kT),

где п — концентрация частиц; U их потенциальная энергия; n0 концентрация частиц в точках поля, где U=0; k постоян­ная Больцмана; T термодинамическая температура; е — основа­ние натуральных логарифмов.

· Барометрическая формула (распределение давления в одно­родном поле силы тяжести)

р=p0e-mgz/(kT), или p=p0e-Mgz/(RT),

где р — давление газа; m масса частицы; М — молярная масса; z — координата (высота) точки по отношению к уровню, принятому за нулевой; р0 давление на этом уровне; g ускорение свобод­ного падения; R молярная газовая постоянная.

· Вероятность того, что физическая величина х, характери­зующая молекулу, лежит в интервале значений от х до x+dx, определяется по формуле

dW(x)=f(x)dx*

где f(x)—функция распределения молекул по значениям данной физической величины х (плотность вероятности).

 

* Приведенная формула выражает также долю молекул, для которых физическая величина х заключена в интервале от х до х+dх.

· Количество молекул, для которых физическая величина х, характеризующая их, заключена в интервале значений от х до x+dx,

dN=NdW(x)=Nf(x)dx.

· Распределение Максвелла (распределение молекул по ско­ростям) выражается двумя соотношениями:

а) число молекул, скорости которых заключены в пределах от J до J+dJ,

,

где f(J)функция распределения молекул по модулям скоростей, выражающая отношение вероятности того, что скорость молекулы лежит в интервале от J до J+dJ, к величине этого интервала, а также долю числа молекул, скорости которых лежат в указанном интервале; N — общее число молекул; m масса молекулы;

б) число молекул, относительные скорости которых заключены в пределах от u до u+du,

где u=J/Jв относительная скорость, равная отношению скорости J к наивероятнейшей скорости Jв (о скоростях молекулы см. §9); f(u) функция распределения по относительным скоростям.

· Распределение молекул по импульсам. Число молекул, им­пульсы которых заключены в пределах от р до p+dp,

,

где f(p) функция распределения по импульсам.

· Распределение молекул по энергиям. Число молекул, энер­гии которых заключены в интервале от e до e+de,

,

где f(e)—функция распределения по энергиям.

· Среднее значение * физической величины х в общем случае

,

а в том случае, если функция распределения нормирована на еди­ницу,

<x>=òxf(x)dx

где f(x) — функция распределения, интегрирование ведется по всей совокупности изменений величины х.

Например, среднее значение скорости молекулы (т. е. средняя арифметическая скорость) ; средняя квадратичная скорость <Jкв>=<J2>1/2, где ; средняя кинетическая энергия поступательного движения молекулы .

* Интегралы для вычисления средних значений приведены в табл. 2.

· Среднее число соударений, испытываемых одной молекулой газа в единицу времени,

,

где d эффективный диаметр молекулы; п — концентрация моле­кул; <J> — средняя арифметическая скорость молекул.

· Средняя длина свободного пробега молекул газа

.

· Импульс (количество движения), переносимый молекулами из одного слоя газа в другой через элемент поверхности,

,

где h динамическая вязкость газа; —градиент (поперечный) скорости течения его слоев; DS — площадь элемента поверхности; dt время переноса.

· Динамическая вязкость

h=r<J><l>

где r плотность газа (жидкости); <J> средняя скорость хаоти­ческого движения его молекул; <l> — их средняя длина свободного пробега.

· Закон Ньютона

где F сила внутреннего трения между движущимися слоями газа.

· Закон Фурье

DQ= -lSDt,

где DQ теплота, прошедшая посредством теплопроводности через сечение площадью S за время Dt; l теплопроводность; - градиент температуры.

· Теплопроводность .(коэффициент теплопроводности) газа

l=cvr<J><l> или l=<J><l>,

где cv удельная теплоемкость газа при постоянном объеме; rплотность газа; <J> — средняя арифметическая скорость его молеку­лы; <l> — средняя длина свободного пробега молекул.

· Закон Фика

Dm= -Dm1SDt,

где Dm масса газа, перенесенная в результате диффузии через поверхность площадью S за время Dt; D диффузия (коэффициент Эффузии); градиент концентрации молекул; m1масса одной молекулы.

· Диффузия (коэффициент диффузии)

D=<J><l>

Автомобиль массой 2 т затормозил и остановился, пройдя путь 50 м. Найти работу силы трения, если дорога горизонтальна и коэффициент трения равен 0,4.

Автомобиль массой 2 т движется в гору. Уклон горы равен 4 м на каждые 100 м пути. Коэффициент трения равен 0,08. Найти работу, совершенную двигателем автомобиля на пути 3 км.

Найти, какую мощность развивает двигатель автомобиля массой 1 т, если известно, что автомобиль едет с постоянной скоростью 36 км/ч по горизонтальной дороге.

Автомобиль массой 10 т движется под уклон по дороге, составляющей с горизонтом угол, равный 40. Найти работу силы тяжести на пути 100 м.

Гиря, положенная на верхний конец спиральной пружины, сжимает ее на 2 мм. На сколько сожмет пружину та же гиря, упавшая на конец пружины с высоты 5 см?

Молот массой 70 кг падает с высоты 5 м и ударяет по железному изделию, лежащему на наковальне. Масса наковальни вместе с изделием 1330 кг. Считая удар абсолютно неупругим, определить энергию, расходуемую на деформацию изделия.

Определить работу, совершаемую человеком при поднятии груза массой 2 кг на высоту 1 м с ускорением 3 м/с2.

Определить КПД наклонной плоскости длиной 1 м и высотой 0,6 м, если коэффициент трения при движении по ней тела равен 0,1.

Определить полезную мощность при разбеге самолета массой 1 т. длина разбега 300 м, взлетная скорость 30 м/с, коэффициент сопротивления 0,03.

Определить момент силы, который необходимо приложить к однородному диску, вращающемуся с частотой 12 с-1, чтобы он остановился через 8 с. Диаметр диска 30 см, масса диска 6 кг.

На однородный сплошной цилиндрический вал радиусом 50 см намотана легкая нить, к концу которой прикреплен груз массой 6,4 кг. Груз, опускается с ускорением 2 м/с2. Определить момент инерции вала и массу вала.

К ободу колеса радиусом 0,5 м и массой 50 кг приложена касательная сила 98.1 Н. Найти угловое ускорение колеса. Через какое время после начала действия силы колесо будет иметь частоту вращения 100 об/с? Колесо считать однородным диском. Трением пренебречь.

Маховик, момент инерции которого 63,6 кг∙м2, вращается с угловой скоростью 31.4 рад/с. Найти момент сил торможения, под действием которого маховик остановится через 20 с. Маховик считать однородным диском.

По горизонтальной плоской поверхности катится диск со скоростью 8 м/с. Определить коэффициент сопротивления, если диск, будучи предоставленным самому себе, остановился, пройдя путь в 18 м.

Определить тормозящий момент, которым можно остановить за 20 с маховое колесо массой 50 кг и радиусом 0,30 м, вращающееся с частотой 20 об/с. Массу маховика считать распределённой по ободу. Чему равна работа, совершаемая тормозящим моментом?