Строймех
Сопромат
Математика

Театр

Карта

Термодинамика Основные формулы Термодинамика

РЕАЛЬНЫЕ ГАЗЫ. ЖИДКОСТИ

· Уравнение Ван-дер-Ваальса для одного моля газа

,

для произвольного количества вещества ν газа

,

где a и b постоянные Ван-дер-Ваальса (рассчитанные на один моль газа); V – объем, занимаемый газом; Vm — молярный объем; р — давление газа на стенки сосуда.

Внутреннее давление, обусловленное силами взаимодействия молекул,

, или .

· Связь критических параметров – объема, давления и температуры газа – с постоянными а и b Ван-дер-Ваальса:

Vm кр=3b; ; .

· Внутренняя энергия реального газа

,

где СV — молярная теплоемкость газа при постоянном объеме.

· Поверхностное натяжение

σ=F/l,

где F – сила поверхностного натяжения, действующая на контур l, ограничивающий поверхность жидкости, или

,

где ΔE изменение свободной энергии поверхностной пленки жидкости, связанное с изменением площади ΔS поверхности этой пленки.

· Формула Лапласа в общем случае записывается в виде

где р – давление, создаваемое изогнутой поверхностью жидкости; σ поверхностное натяжение; R1 и R2 радиусы кривизны двух взаимно перпендикулярных сечений поверхности жидкости, а в случае сферической поверхности

p=2σ/R.

· Высота подъема жидкости в капиллярной трубке

где σ – краевой угол; R радиус канала трубки; р – плотность жидкости; g ускорение свободного падения.

· Высота подъема жидкости между двумя близкими и параллельными плоскостями

где d расстояние между плоскостями.

· Расход жидкости в трубке тока (рис. 12.1):

а) объемный расход QV=vS;

б) массовый расход Qm=pvS, где S – площадь поперечного сечения трубки тока; v скорость жидкости; р – ее плотность.

· Уравнение неразрывности струи

,где S1 и S2 – площади поперечного сечения трубки тока в двух местах; v1 и v2  –соответствующие скорости течений.

· Уравнение Бернулли для идеальной несжимаемой жидкости в общем случае

,

где p1 и р2 статические давления жидкости в двух сечениях трубки тока; v1 и v2 –скорости жидкости в этих сечениях;  и  – динамические давления жидкости в этих же сечениях; h1 и h2 – высоты их над некоторым уровнем (рис. 12.1); pgh1 и pgh2 – гидростатические давления.

Уравнение Бернулли в случае, когда оба сечения находятся на одной высоте (h1=h2)

.

· Скорость течения жидкости из малого отверстия в открытом широком сосуде

,

где h глубина, на которой находится отверстие относительно уровня жидкости в сосуде.

· Формула Пуазейля. Объем жидкости (газа), протекающей за время t через длинную трубку,

где r — радиус трубки; l – ее длина; Δp – разность давлений на концах трубки; η динамическая вязкость (коэффициент внутреннего трения) жидкости.

· Число Рейнольдса для потока жидкости в длинных трубках

,

где <v> – средняя по сечению скорость течения жидкости; d диаметр трубки, и для движения шарика d жидкости

,

где v – скорость шарика; d—его диаметр.

Число Рейнольдса Re есть функция скорости v тела, линейной величины l, определяющей размеры тела, плотности р и динамической вязкости η жидкости, т. е.

.

При малых значениях чисел Рейнольдса, меньших некоторого критического значения Reкp, движение жидкости является ламинарным. При значениях Re>>Reкр движение жидкости переходит в турбулентное.

Критическое число Рейнольдса для движения шарика в жидкости Reкр=0,5; для потока жидкости в длинных трубках Reкр=2300.

· Формула Стокса. Сила сопротивления F, действующая со стороны потока жидкости на медленно движущийся в ней шарик,

,

где r радиус шарика; v его скорость.

Формула справедлива для скоростей, при которых число Рейнольдса много меньше единицы (Re<<l).

Термодинамика

Связь между молярной С и удельной с теплоемкостями:

.  (2.6)

Молярная теплоемкость при постоянном объеме:

.  (2.7)

Уравнение Майера:

,  (2.8)

где CP – молярная теплоемкость при постоянном давлении

Первое начало термодинамики:

,  (2.9)

где Q – количество теплоты, сообщенное системе (газу); ΔU – изменение внутренней энергии газа; А – работа, совершенная газом против внешних сил.

Изменение внутренней энергии газа:

.  (2.10)

Работа, совершаемая при изменении объема газа:

.  (2.11)