Электростатика Потенциал Свойства диэлектриков Энергия электрического поля

Строймех
Сопромат
Математика

Театр

Карта

ЗАКОН КУЛОНА. ВЗАИМОДЕЙСТВИЕ ЗАРЯЖЕННЫХ ТЕЛ

· Закон Кулона

,

где F — сила взаимодействия двух точечных зарядов Q1, и Q2; r расстояние между зарядами; e — диэлектрическая проницаемость среды; e0 — электрическая постоянная:

.

Закон сохранения заряда

,

где  — алгебраическая сумма зарядов, входящих в изолированную систему; n — число зарядов.

Пример 1. Три одинаковых положительных заряда Q1=Q2=Q3=1 нКл расположены по вершинам равностороннего треугольника (рис. 13.1). Какой отрицательный заряд Q4 нужно поместить в центре треугольника, чтобы сила притяжения с его стороны уравновесила силы взаимного отталкивания зарядов, находящихся в вершинах?

Пример 2. Два заряда 9Q и -Q закреплены на расстоянии l=50 см друг от друга. Третий заряд Q1 может перемещаться только вдоль прямой, проходящей через заряды. Определить положение заряда Q1, при котором он будет находиться в равновесии. При каком знаке заряда равновесие будет устойчивым *?

Пример 3. Тонкий стержень длиной l=30 см (рис. 13.3) несет равномерно распределенный по длине заряд с линейной плотностью t=1 мкКл/м. На расстоянии r0=20 см от стержня находится заряд Q1=10 нКл, равноудаленный от концов, стержня. Определить силу F взаимодействия точечного заряда с заряженным стержнем.

НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ. ЭЛЕКТРИЧЕСКОЕ СМЕЩЕНИЕ Пример 1. Маховик в виде колеса массой m = 30 кг и диаметром 60 см вращается с угловой скоростью w, изменяющейся по закону w = Аt10 , где А = 2 рад/с11. Найти закон движения j(t), угловое ускорение e (t), момент сил М(t) и момент количества движения L(t). Вычислить эти величины через 2 с после начала движения. Считать начальный угол j(t =0) = j0 = 0 .

Решение.

Перевод в СИ

m = 30 кг 30 кг

D = 60 см 0,6 м

w = Аt10 = 2× t10рад/с11 2× t10рад/с

t = 2 c 2 c

Определить: j(t), e (t), М(t), L(t).

Если известен закон движения, то угловая скорость определяется как первая производная от j(t) по времени:

dj

w(t) = ¾¾ (1)

dt

Закон движения j(t) находится решением обратной задачи, т.е. интегрированием угловой скорости по времени:

 t 

 j(t) = ò w(t) d t  + j

 0 

При w(t) = 2 ×t10 ,с учетом j0 = 0:

 t 2×t11

 j(t) = ò 2×t10 d t  + j0 = ¾¾ (3)

 0 11 

 2×211

В момент времени t = 2 с маховик повернулся на угол j(t =2 с) = ¾¾

 11 

= 372,3 » 372 рад.

Угловое ускорение определяется как первая производная от угловой скорости по времени:

 dw d

 e = ¾¾¾¾ ( 2 ×t10) = 10 × 2× t9 (4)

 dt dt

В момент времени t = 2 c угловое ускорение равно:

 e ( t = 2c) = 10 × 2 × 29 = 10240 » 1,02× 104 рад/с2 

Момент сил можно определить из основного закона динамики для вращательного движения твердого тела:

 М = I × e  (5)

где I - момент инерции тела.

В нашем случае момент инерции колеса равен:

 I = mR2 = mD2/4 (6)

 

Подставляя выражения (4) и (6) в (5) получим:

 mD2 20 t9

 М = ¾¾ ×¾¾

 4 

При t = 2 c

 30 × ( 0,6)2 20×29

 M = ¾¾ ¾¾ ¾¾ = 27648 » 2,77 × 104 Н×м

 4

Момент количества движения равен:

 L = I w (7)

Подставляя выражения для w  и (6) в (7) получим:

 mD2 2 t10

 L = ¾¾ ¾¾

 4

При t = 2 c

 30× (0,6)2 × 2× 210

 L = ¾¾ ¾¾ ¾¾ = 5529,6 = 5,53× 103 кг м2/с

 4

Проверим размерность полученных выражений.

 рад с11

 [j] = [А] [t11] = ¾¾¾¾ = рад;

 с11 

 рад с9

 [e] = [А] [t9] = ¾¾¾¾  = рад/с2

 с11

 mD2 × A t9 кг м2 с9 кг м м 

 [M] = [¾¾¾¾¾¾¾¾ ] = ¾¾¾¾ = ¾¾¾¾ = Н м

 4 11 с11 с2 

 кг м2 c10

 [L] = [ m D2 A t10 ] = ¾¾¾¾ = кг м2 с-1

 c11

Ответ: j(t=2) =372рад, e(t=2с)= 1,02× 104 рад/с2, М(t) =2,77 × 104 Н м

L(t) = 5,53× 103 кг м2/с

Пример 1. Электрическое поле создано двумя точечными зарядами: Q1=30 нКл и Q2= –10 нКл. Расстояние d между зарядами равно 20 см. Определить напряженность электрического поля в точке, находящейся на расстоянии r1=15 см от первого и на расстоянии r2=10 см от второго зарядов.

Пример 2. Электрическое поле создано двумя параллельными бесконечными заряженными плоскостями с поверхностными плотностями заряда s1=0,4 мкКл/м2 и s2=0,1 мкКл/м2. Определить напряженность электрического поля, созданного этими заряженными плоскостями.

Пример 3. На пластинах плоского воздушного конденсатора находится заряд Q=10 нКл. Площадь S каждой пластины конденсатора равна 100 см2 Определить силу F, с которой притягиваются пластины. Поле между пластинами считать однородным.

Пример 4. Электрическое поле создано, бесконечной плоскостью, заряженной с поверхностной плотностью s=400 нКл/м2, и бесконечной прямой нитью, заряженной с линейной плотностью t=100 нКл/м. На расстоянии r=10 см от нити находится точечный заряд Q=10 нКл. Определить силу, действующую на заряд, ее направление, если заряд и нить лежат в одной плоскости, параллельной заряженной плоскости.

Пример 5. Точечный заряд Q=25 нКл находится в ноле, созданном прямым бесконечным цилиндром радиусом R=1 см, равномерно заряженным с поверхностной плотностью s=2 мкКл/м2. Определить силу, действующую на заряд, помещенный от оси цилиндра на расстоянии r=10 см.

Пример 6. Электрическое поле создано тонкой бесконечно длинной нитью, равномерно заряженной с линейной плотностью t=30 нКл/м. На расстоянии а=20 см от нити находится плоская круглая площадка радиусом r=1 см. Определить поток вектора напряженности через эту площадку, если плоскость ее составляет угол b=30° с линией напряженности, проходящей через середину площадки.

Пример 7. Две концентрические проводящие сферы радиусами R1=6 см и R2=10 см несут соответственно заряды Q1=l нКл и Q2= –0,5 нКл. Найти напряженность Е поля в точках, отстоящих от центра сфер на расстояниях r1=5 см, r2=9 см r3=15см. Построить график Е(r).

Потенциал ЭНЕРГИЯ СИСТЕМЫ ЭЛЕКТРИЧЕСКИХ ЗАРЯДОВ. РАБОТА ПО ПЕРЕМЕЩЕНИЮ ЗАРЯДА В ПОЛЕ

Пример 2. Соковыжималка раскручивается до 7200 об\мин. Определить силу, действующую на кусочек яблока массой 5г, при диаметре камеры D =24 см. Вычислить линейную скорость кусочка яблока. Оценить мощность соковыжималки, если максимальные обороты достигаются за 8с.Барабан представляет собой полуцилиндр, масса дна и кольца примерно одинакова и равна 100 г. Яблочная масса при загрузке составляет 300 г.

Решение. СИ

n = 7200 об\мин = 120 с-1

R = D/2 = 12 см = 0,12 м

m = 5 г = 5 ·10-3 кг

m1 = 100 г = 0,1 кг

m2 = 300 г = 0,3 кг

t = 4с

Определить: силу F, скорость V, мощность Р

Кусок яблока движется по круговой траектории с центростремительным ускорением

а = V2\ R . (1)

Сила, действующую на кусочек яблока со стороны барабана, равна

F= mV2\ R .

С силой F кусок яблока прижимается к барабану. Поэтому искомая сила равна

F= mV2\ R = F= mw2 R , (2)

где V = w R –линейная скорость кусочка яблока;

 w = 2π n - угловая скорость

Проверим размерность. подставляя:

 кг· с-2 · м

[F] = [¾¾¾¾¾¾¾¾ ] = кг· м·с-2 = Н

Проведем вычисления:

Сила F = mw2 R= 5 ·10-3 ·(2 ·3,14)2 ·(120)21,2·10-1=5·10-3 ·4·9,86·1,44·104 1,2·10-1≈341 Н

Линейная скорость кусочка яблока:

V = w R = 2π n R =2·3,14 ·120 · 0,12 =90.432 ≈ 90.4 м\с

Мощность соковыжималки можно оценить, вычислив кинетическую энергию вращающегося барабана вместе с содержимым и разделив её на время раскручивания.

Кинетическая энергия вращения равна:

Екин = (I + I1) w2 \2

где I = m2 R 2 – момент инерции яблочной массы;

I1 = m1 R 2 \ 2 + m1 R 2 момент инерции полуцилиндра, состоящего из диска и кольца.

I = 0,3· (0,12)2 = 0.00432 =4.32·10-3 кг·м2

I1 =(0.05 +0.1) · (0,12)2 = 2.16·10-3 кг·м2 

Екин= (4.32 + 2.16) ·10-3 ·(2π 120)2 \ 2 = 6.48 ·10-3 · 2· (3,14)2 1.44· 104 ≈ 1.84·103 Дж.

Мощность соковыжималки:

Р = Екин \ t =1.84·103 / 4 ≈ 460 Вт

Ответ: сила , прижимающая кусочек яблока к барабану F = 341 Н,

линейная скорость кусочка яблока:V ≈ 90.4 м\с ; мощность соковыжималки Р ≈ 460 Вт.

Пример 1. Положительные заряды Q1=3 мкКл и Q2=20 нКл находятся в вакууме на расстоянии r1=l,5 м друг от друга. Определить работу A, которую надо совершить, чтобы сблизить заряды до расстояния r2=1 м.

Пример 2. Найти работу А поля по перемещению заряда Q=10 нКл из точки 1 в точку 2 (рис. 15.1), находящиеся между двумя разноименно заряженными с поверхностной плотностью s=0,4 мкКл/м2 бесконечными параллельными плоскостями, расстояние l между которыми равно 3 см.

Пример 3. По тонкой нити, изогнутой по дуге окружности радиусом R, равномерно распределен заряд с линейной плотностью t=10 нКл/м. Определить напряженность Е и потенциал j электрического поля, создаваемого таким распределенным зарядом в точке О, совпадающей с центром кривизны дуги. Длина l нити составляет 1/3 длины окружности и равна 15 см.

Пример 4. Электрическое поле создана длинным цилиндром радиусом R=1 см, равномерно заряженным с линейной плотностью t=20 нКл/м. Определить разность потенциалов двух точек этого поля, находящихся на расстояниях a1=0,5 см и а2=2 см от поверхности цилиндра, в средней его части.

Пример 5. Электрическое поле создано тонким стержнем, несущим равномерно распределенный по длине заряд t=0,1 мкКл/м. Определить потенциал j поля в точке, удаленной от концов стержня на расстояние, равное длине стержня.

Пример 6. Электрон со скоростью v=1,83×106 м/с влетел в однородное электрическое поле в направлении, противоположном вектору напряженности поля. Какую разность потенциалов U должен пройти электрон, чтобы обладать энергией Ei=13,6 эВ*? (Обладая такой энергией, электрон при столкновении с атомом водорода может ионизировать его. Энергия 13,6 эВ называется энергией ионизации водорода.)

Пример 7. Определить начальную скорость υ0 сближения про­тонов, нахо­дя­щихся на достаточно большом расстоянии друг от друга, если минимальное расстояние rmin, на которое они могут сблизиться, равно 10-11 см.

 Пример 8. Электрон без на­чальной скорости прошел разность потен­циалов U0=10 кВ и влетел в пространство между пластинами плоского конденсатора, заряжен­ного до разности потенциалов Ul=100 В, по ли­нии АВ, парал­лельной пластинам (рис. 15.4). Рас­стояние d между пла­стинами равно 2 см. Длина l1 ­пластин конденсатора в нап­равлении по­лета элек­трона, равна 20 cм. Определить рас­стояние ВС на экране Р, от­стоящем от конденсатора на l2=1 м.

ЭЛЕКТРИЧЕСКИЙ ДИПОЛЬ Свойства диэлектриков

 Пример 1. Диполь с электрическим моментом р=2 нКл·м находится в однородном электрическом поле напряженностью Е=30 кВ/м. Вектор р составляет угол α=60˚ с направлением си­ловых линий поля. Опреде­лить произведенную внешними силами работу А поворота диполя на угол β=30°.

Пример 2. Три точечных заряда Ql Q2 и Q3 образуют электрически нейтральную систему, причем Ql=Q2= 10 нКл. Заряды рас­положены в вершинах равностороннего треугольника. Определить максимальные значения напряженности Еmах и потен­циала φmах поля, создаваемого этой системой зарядов, на расстоянии r= 1 м от центра треугольника, длина а стороны которого равна 10 см.

Пример 3. В атоме йода, находящемся на расстоянии r=1 нм от альфа-частицы, индуцирован электрический момент р= 1,5*10-32 Кл·м. Опре­делить поляризуемость α атома йода.

Пример 4. Криптон находится под давлением р=10 МПа при температуре Т= 200 К, Определить: 1) диэлектрическую проницаемость ε криптона; 2) его поляризованность Р, если напряженность Е0 внешнего электрического поля равна 1 MB/м. Поляризуемoсть α криптона равна 4,5·10-29 м3,

Пример 5. Жидкий бензол имеет плотность ρ=899 кг/м3 и по­казатель преломления п= 1,50. Определить: 1) электронную поляризуемость αе молекул бензола; 2) диэлектрическую проницаемость ε паров бензола при нормальных условиях.

ЭЛEКTPИЧECКAЯ EMКOCTЬ. КOHДEHCATOPЫ

Пример 3 Определить плотность смеси газов ( 60 % пропана - С3Н8,30% бутана - С4 Н10 и 10% метана - CH4) находящихся при температуре 27 0С и давлении 0.11МПа.

Решение. СИ

m1(С3Н8) = (3×12 +8×1) × 10-3 = 44×10-3кг/моль - “ -

m1/m= 0.6 - “ -

m2 (С4H10) = (4×12 + 10×1) ×10-3=56×10-3 кг/моль - “ - 

m2/m =0.3 - “ -

m3 (СН4) = ( 12 + 4×1) ×10-3 = 16×10-3 кг/моль - “ -

m3/m = 0.1 - “ -

t = 270C Т = 300 К

P = 0.11 MПа 0.11× 106 Па

Определить: r

По закону Дальтона давление смеси газов P равно сумме парциальных давлений газов, составляющих смесь P1( C3 H8), P2(C4 H10) ,P3 (CH4) :

P = P1 + P2 + P3 (1)

Для каждого газа справедливо уравнение состояния (Клапейрона -Менделеева):

Pi V = (mi /mi )RT (2)

Из выражения (2) можно выразить парциальное давление:

Pi = (mi /mi )RT/V (3)

Уравнение Клапейрона - Менделеева справедливо и для смеси газов:

P V = (m /m )RT (4)

Плотность газа равна:

r = m/V = Pm/ RT (5)

 Молярную массу смеси можно найти подставив (3) в (1) :

P =(m1/m1)RT/V + (m2 /m2 )RT/V + (m3 /m3 )RT/V = (m/m) RT/V (6) 

Из уравнения (6) молярная масса m равна:

m = (m1/m1m + m2/m2m + m3/m3m)-1 (7)

Подставляя (7) в (5) получим выражение для плотности смеси:

r = P/ RT (m1/m1m + m2/m2m + m3/m3m) 

Проверим размерность получившейся формулы:

[r]=[P] /[R][T] [m-1]=Па/ (Дж моль-1К-1) К (кг/моль)-1=Па/Дж кг-1=Нм-2 кг/Нм=

кг/м3

r = 0.11×106 /8.31 300 (0.6/44×10-3 + 0.3/ 56×10-3 + 0.11/6×10-3) = (0.11× 39.6 /8.31×3×) × 106-2-3 = = 0.175×10 =1.75 кг/м3

Ответ: r = 1.75 кг/м3

Пример 1. Определить электрическую емкость С плоского кон­денсатора с двумя слоями диэлектриков: фарфора толщиной d1=2 мм и эбонита толщиной d2= 1,5 мм, если площадь S пластин равна 100 см2.

Пример 2. Два плоских конденсатора одинаковой электроемко­сти С12соединены в батарею последовательно и подключены источнику тока с электродвижущей силой ε. Как изменится разность потенциалов U1 на пластинах первого конденсатора, если пространство между пластинами второго конденсатора, не отключая источника тока, заполнить диэлектриком с диэлектрической проницаемостью ε =7?

ЭНЕРГИЯ ЗАРЯЖЕННОГО ПPOBOДHИКA. Энергия электрического поля

Пример 1. Конденсатор электроемкостью C1=З мкФ былзаря­жен до разности потенциалов U1=40 В. После отключения oт источника тока конденсатор был соединен параллельно с другим незаря­женным конденсатором электроемкостью С2=5 мкФ. Определить энергию ΔW, израсходованную на образование искры в момент присоединения второго конденсатора.

Пример 2. Плоский воздушный конденсатор с площадью S пла­стины, равной 500 см2, подключен к источнику тока, ЭДС которого равна 300 В. Определить работу А внешних сил по раз­движению пластин от расстояния d1 = 1 см до d2=3 см в двух слу­чаях: 1) пластины перед раздвижением отключаются от источника тока; 2) пластины в процессе раздвижения остаются подключенны­ми к нему.

Пример 3. Плоский конденсатор заряжен до разности потенциалов U= 1 кВ. Расстояние d между пластинами равно 1 см. ДИЭ;/1ект­рик - стекло. Определить объемную плотность энергии поля кон­денсатора.

 Пример 4. Металлический шар радиусом R=3 cм несет заряд Q=20 нКл. Шар окружен слоем парафина толщиной d=2см. Определить энергию W электрического поля, заключенного в слое ди­электрика.