Постоянный электрический ток

Машиностроительное черчение
Единая система конструкторской
документации
Машиностроительные построения
Инженерная графика
Сборочный чертеж
Начертательная геометрия
Геометрические основы
построения чертежа
Конспект лекций по начертательной
геометрии
История искусства
Стили в искусстве Готика
Русский балетный театр
Русское изобразительное искусство
ТКМ
Материаловедение
Основы теории сплавов
Теория конструктивных материалов
Сопромат
Сопративление метериалов
Лабораторные работы
Задачи строительной механики
Лекции физика
Физика
Электричество
Магнетизм
Оптика
Электромагнетизм
Молекулярная физика
Лекции МАИ
Лекции МАИ часть 2
Диэлектрики
Квантовая механика
Физические законы механики
Электромагнитное взаимодействия
Атомные станции
Атомная энергетика
Экология энергетики
Атомная и ядерная физика
Теплотехника
Термодинамика
Билеты к экзамену по физике
Задачи физика электротехника
Решение задач по ядерной физике
Электростатика
Геометрическая оптика
Тепловое излучение
Основы теории сплавов
Теория относительности
Физические основы механики
Законы идеальных газов
Электростатика
Основы электротехники
Постоянный ток
Электромагнетизм
Оптика
Законы теплового излучения
Ядерная физика
Строение атома и молекул
Задачи математика
Математика
1 семестр
2 семестр
3 семестр
4 семестр
Интегралы
Лекции по высшей математике
Вычисление площадей в
декартовых координатах
Аналитическая геометрия
 
Информатика
Восстановление сети после аварии
Основные понятия и категории
информатики
Сетевые операционные системы

ОСНОВНЫЕ ЗАКОНЫ ПОСТОЯННОГО ТОКА

·     Сила постоянного тока

I=Q/t,

где Q - количество электричества, прошедшее сечение проводника за время t.

·     Плотность электрического тока есть векторная величина, равная отношению силы тока к площади S поперечного сечения проводника:

где  - единичный вектор, по направлению совпадающий с правлением движения положительных носителей заряда.

Элементы ТТЛ с разными выходными каскадами В процессе развития ТТЛ был разработан целый набор элементов, предназначенный для решения конкретных задач в цифровой электронике. Общим для них является наличие многоэмиттерного транзистора на входе, а отличаются они различными типами выходных каскадов

·     Сопротивление однородного проводника

R=ρl/S,

  где ρ - удельное сопротивление вещества проводника; l - его длина.

·     Проводимость G проводника и удельная проводимость γ вещества

G=1/R, γ=l/ρ.

Пример 1. Определить заряд Q, прошедший по проводу с сопро­тивлением R=3 Ом при равномерном нарастании напряжения на концах провода от U0=2 В до U =4 В в течение t=20с.

 П р и м е р 2. Потенциометр с сопротивлением R= 100 Ом подклю­чен к источнику тока, ЭДС ε которого равна 150 В и внутреннее со­противление r= 50 Ом (рис. 19.1). Определить показание вольтметра с сопротивлением RB=500 Ом, соединенного проводником с одной из клемм потен­циометра и подвижным контактом с се­рединой обмотки потенциометра. Какова разность потенциалов между теми же точками потенциометра при отключен­ном вольтметре?

Пример 3. Источники тока с электродвижущими силами ε1 и ε2 включены в цепь, как показано на рис. 19.2. Определить силы токов, текущих в сопротивлениях R2 и R3, если ε1= 10 В иε2=4 В, а R1=R4=20м и R2=R3=4 Ом. Сопротивлениями источников тока пренебречь.

 Пример 4. Сила тока в про­воднике сопротивлением R=20 Ом нарастает в течение вре­мени Δt=2 с по линейному за. кону от I0=0 до Imax=6 А (рис. 19.3). Определить количество теплоты Q1, выделившееся в этом проводнике за первую секунду, и Q2 - за вторую, а также найти отношение этих количеств теплоты Q2/Q1.

Пример 5. Сила тока в резисторе линейно возрастает за 4 секунды от 1 до 8 А. Сопротивление резистора 10 Ом. Определить количество теплоты, выделившееся в резисторе за первые 3 секунды.

Решение.

t0 =0 c По закону Джоуля -Ленца количество теплоты dQ,

t1 =4 c  выделяющееся за время dt равно:

I0 =1A dQ = I2(t)Rdt

I1 =8 A Зависимость тока от времени, по условию, является

t2 =3 c линейной:

R = 10 Ом  I(t) = I0 + kt

Q = ? где k = (I1 - I0)/(t1 - t0) - скорость возрастания тока.

Количество тепла выделившееся на сопротивлении R за промежуток времени от t0 до t2 определяется интегралом :

 t2 t2 

 Q = ò I2(t)Rdt = ò (I0 + kt)2 R dt

 t0 t0

Вычислив интеграл , получаем:

 Q = I02 R(t2 - t0) + 2I0Rk(t2 - t0)2/2 + Rk2 (t2 - t0)3/3 =

 = 10{1×3 + 2×1×(7/4)(3)2 + (7/4)2(3)3/3] = 620.625 » 

 » 621 Дж

Ответ: Q = 621 Дж

ТОК В МЕТАЛЛАХ, ЖИДКОСТЯХ И ГАЗАХ

Пример 1. По железному проводнику, диаметр d сечения которого равен 0,6 мм, течет ток 16 А. Определить сpeднюю скорость <υ> направленного движения электронов, считая, что концентрация n свободных электронов равна концентрации п' атомов проводника.

Пример 2. В цепь источника постоянного тока с ЭДС ε=6 В включен резистор сопротивлением R=80 Ом. Определить: 1) плот­ность тока в соединительных проводах площадью поперечного сече­ния S=2 мм2; 2) число N электронов, проходящих через сечение проводов за время t= 1 с. Сопротивлением источника тока и соединительных проводов пренебречь.

Пример 3. Пространство между пластинами плоского конденса­тора имеет объем V =375 см3 и заполнено водородом, который ча­стично ионизирован. Площадь пластин конденсатора S=250 см2. При каком напряжении U между пластинами конденсатора сила тока I, протекающего через конденсатор, достигнет значения 2 мкА, если концентрация n ионов обоих знаков в газе равна 5,3*107 см-3? Принять подвижность ионов b+=5,4*10-4 м2/(В*с), b-=7,4*10-4 м2/ (В*с).

Пример 6. Считая, что на внешнее излучение уходит 5% мощности СВЧ печи, определить безопасное расстояние, на котором можно находиться вблизи печи, если допустимая плотность потока энергии 103 мкВт\см2 при работе печи не более 20 мин. СВЧ - печь считать за точечный источник излучения мощностью 1 кВт

Дано:

S0 = 10 мкВт/см2 = 10·10-6 ·104= 0,1 Вт/м2

h = 5%=0,05 

Р0 = 1 кВт = 103 Вт

______________

Найти r > r0

Если считать печь точечным источником излучения, то энергия приходящаяся на единицу площади в единицу времени (т.е. плотность потока энергии или плотность мощности) на расстоянии r равна:

При продолжительности воздействия излучения не более 20 минут санитарные нормы ограничивают плотность потока энергии не более S0 = 0.1Вт/м2.

Это означает, что находиться около источника можно только на расстояниях, на которых модуль вектора излучения Умова - Пойнтинга (плотность потока энергии) будет меньше, чем S0 .

S (r) < S0 .

  < S0

 ______________ 

r > r0 = Ö h Ро / 4p S0 

 

Проведем вычисления:

 ______________ 

  r0 = Ö 0,05 103 / 4p 10-1 = 6.3

Ответ: находиться можно только на расстояниях больших, чем r > r0 = 6.3 м.