Атомная физика | Физические законы механики | Термодинамика | Электричество | Магнетизм | Оптика | Молекулярная физика | Физмат.ру
Математика 1 семестр | Математика 2 семестр | Математика 3 семестр | Математика 4 семестр | Интегралы | 1 курс

ЭЛЕКТРОМАГНЕТИЗМ - курс лекций начало

 

СИЛА, ДЕЙСТВУЮЩАЯ НА ЗАРЯД, ДВИЖУЩИЙСЯ В МАГНИТНОМ ПОЛЕ

 

Пример 2. Электрон, имея скорость u=2 Мм/с, влетел в однородное магнитное поле с индукцией В=30 мТл под углом a=30° к направлению линий индукции. Определить радиус R и шаг h винтовой линии, по которой будет двигаться электрон.

Решение. Известно, что на заряженную частицу, влетевшую в магнитное поле, действует сила Лоренца, перпендикулярная векторам магнитной индукции В и скорости v частицы:

F=QuB sin a, (1) 

где Q — заряд частицы. 

В случае, если частицей является электрон, формулу (1) можно записать в виде

F= |e|uB sin a.

 Так как вектор силы Лоренца перпендикулярен вектору скоро­сти, то модуль скорости не будет изменяться под действием этой силы. Но при постоянной скорости, как это следует из формулы (1), останется постоянным и значение силы Лоренца. Из механики известно, что постоянная си­ла, перпендикулярная скоро­сти, вызывает движение по окружности. Следовательно, электрон, влетевший в маг­нитное поле, будет двигаться по окружности в плоскости, перпендикулярной линиям индукции, со скоростью, рав­ной поперечной составляю­щей u1 скорости (рис. 23.1); одновременно он будет дви­гаться и вдоль поля со ско­ростью u||:

u|| = u sin a, u|| = u cos a.

В результате одновременного участия в движениях по окружно­сти и по прямой электрон будет двигаться по винтовой линии.

Радиус окружности, по которой движется электрон, найдем сле­дующим образом. Сила Лоренца F сообщает электрону нормальное ускорение ап. По второму закону Ньютона, F=man, где F=|e|u1B и an=u2 ^R,. Тогда 

|e|u^B = mu22/R,

откуда после сокращения на uz находим радиус винтовой линии:

Подставив значения величин т, u, e, В и a и произведя вычисле­ния, получим

R=0,19 мм.

Шаг винтовой линии равен пути, пройденному электроном вдоль поля со скоростью ux за время, которое понадобится электрону для того, чтобы совершить один оборот,

h =u|| T (2)  

где T=2pR/u^период вращения электрона. Подставив это выра­жение для Т в формулу (2), найдем

Подставив в эту формулу значения величин p, R и a и вычислив, получим

h=2,06 мм

§4 Теория атома водорода и водородоподобных ионов по Бору.

1.Эксперементальные факты, объясняемые теорией Бора:

а- размер атома водорода r=53 пм

б- энергия ионизации атома водорода Eи = 13,6 эв

Eи – энергия бомбардирующего электрона достаточная для того чтобы при соударении выбить электрон из атома.

Потенциал ионизации Uи – разность потенциалов которую должен пройти бомбардирующий электрон чтобы приобрести энергию достаточную для ионизации атома.

Eи = eUи

в- закономерность линейчатого спектра.

1/λ = R(1/ni2-1/nj2)

2. Радиусы орбит атомов.

{ ke2/r2 = mV2/r классическая модель

mVr = nћ } – квантовая модель

k = 1/4Piε0 n=1,2,3…

момент импульса кратен ћ

kme2 r3/r2 = mV2m r3/r = m2V2 r2

m2V2 r2 = n2ћ2

kme2 r = n2ћ2

rn = n2ћ2/kme2  - закон квантования

n=1 r1= ћ2/kme2 

r1=(1,05*1,05*10-68)/(9*109*9*10-31*2,56*10-38) = 53*10-12 м

[r]=дж2*с2*Ф/м*кг*кл2 = м

Кл/Ф = В*кл = дж

n2=2  r2=4r1

n3=3 r3=9r1

rn=nr1

3. Скорость электрона

признак водорода E=1 ?

Vn= ke2/ nћ

V1= ke2/ ћ : n=1

V1= (9*109*2,56*10-38)/(1,05*10-34) = 2,2*106 (м/с)

[V] = м*кл2/Ф*Дж*с = м/с

Vn = V1 / n

4. Энергия электрона в атоме

E = - ke2/ 2r

E = T + U

E = - ke2km e2/2n2 ћ 2 = - k2me4/2n2 ћ 2

En = - k2me4/2n2 ћ 2

n = 1:

E1 = (81*1018*9,1*10-31*2,56*2,56*10-76)/(2*1,05*1,05*10-68*1,6*10-15) = - 13,6 эв

[E] = м2*кг*кг4 / Ф2 * Дж2 * с2 = Дж

En = E(бесконечности) - E1

E(бесконечности) = 0

En = E1 / n2 n=1,2,3… - главное квантовое число

5. Закономерность линейчатых спектров.

1/λ = R(1/ni2-1/nj2)

По Бору:

hυ = Ej – Ei = - k2me4/2nj2 ћ 2 – (- k2me4/2ni2 ћ 2 ) = k2me4/2 ћ 2 (1/ ni2 – 1/nj2)

hυ = hC/ λ (?)

k2me4/2hCћ 2 = (81*1018*9,110-31*2,56*2,56*10-76)/( 2*1,05*1,05*10-68*6,62*10-34*3*1081) = 1,1*107 м-1

6. Спектр атома водорода.

диаграмма уровней энергии в атоме водорода

E первого возбуждения = 10,2 эв

U первого возбуждения = 10,2 эв