Атомная физика | Физические законы механики | Термодинамика | Электричество | Магнетизм | Оптика | Молекулярная физика | Физмат.ру
Математика 1 семестр | Математика 2 семестр | Математика 3 семестр | Математика 4 семестр | Интегралы | 1 курс

Электромагнетизм примеры решения задач Магнетизм

Пример 4. Альфа-частица прошла ускоряющую разность потенциалов U=104 В и влетела в скрещенные под прямым углом электрическое (E=10 кВ/м) и магнитное (B=0,1 Тл) поля. Найти отношение заряда альфа-частицы к ее массе, если, двигаясь перпендикулярно обоим полям, частица не испытывает отклонений от прямолинейной траектории.

Решение. Для того чтобы найти отношение заряда Q альфа-частицы к ее массе m, воспользуемся связью между работой сил электрического поля и изменением кинетической энергии частиц:

QU=mu2/2, 

откуда 

Q/m=u2/(2U). (1) 

Скорость u альфа-частицы найдем из следующих соображений. В скрещенных электрическом и магнитном полях на движущуюся заряженную частицу действуют две силы:

а) сила Лоренца Fл=Q[], направленная перпендикулярно скорости v и вектору магнитной индукции В;

б) кулоновская сила FK=QE, сонаправленная с вектором напряженности Е электростатического поля (Q>0).

Сделаем рисунок с изображением координатных осей и векторных

величин. Направим вектор магнитной индукции В вдоль оси Оz (рис. 23.2), скорость v—в положительном направлении оси Ох, тогда Fл и Fk будут направлены так, как это указано на ри­сунке.

Альфа-частица не будет испытывать отклонения, если геометри­ческая сумма сил Fл+Fk будет равна нулю. В проекции на ось

Рис. 23.2

Оу получим следующее равенство (при этом учтено, что вектор ско­рости v перпендикулярен вектору магнитной индукции В и Sin (vÙB)=l):

  QEQuB = O,

откуда

u =E/B.

Подставив это выражение скорости в формулу (1), получим

Q/m=E2( 2UB2).

Убедимся в том, что правая часть равенства дает единицу отно­шения заряда к массе (Кл/кг):

Произведем вычисления:

 

§2 Экспериментальное подтверждение гипотезы де Бройля. Опыты Дэвисона и Джермера. 1927-1923.

Ускоренные электроны пройдя диафрагму (чтобы пучок был узкий) направляются на монокристалл Ni, происходит отражение (угол отражения = углу падения). Далее попадают в цилиндр Фарадея и на землю.

Оказывается что макс ток будет при условии Вульфа-Бреггов:

2dSinφ=mλ m=1,2,3...

максимум порядка > 1 можно наблюдать :

1)поворачивая кристалл (меняя угол фи)

2)меняя Uускор (ускоренная ? Разность потенциалов – меняет импульс)

T = eUуск

λ = h/sqr(2meU)

схема опыта Тартаковского 1928

(катод, сетка, диафрагма, фольга-поликристалл цилиндр фарадея)

2dSinφ=mλ

на экране наблюдаются дифрагционные кольца. Максимум соответствует условию Вульфа-Бреггов.

Тогда возникает вопрос. Может быть такую картину дают не электроны а рентгеновские лучи? Создали магнитное поле, которое бы нейтрализовала рентген. - диффрагция не исчезла.

Электроны обладают волновыми свойствами.

Обладают ли другие частицы волновыми свойствами?

В лаборатории Штерна 1932 г. На атомах водорода и гелия поставлены опыты, доказавшие наличие волновых свойств.

В 1940 опыт на нейтронах.

Обладает ли волновыми свойствами каждая частица или только их совокупность?

1949 г. Поставлен опыт Фабрикана, Бибермана, Сушкина.

Через установку проходило буквально по 1му электрону и присутствовала дифрагционная картина.

Каждой частице присущи волновые свойства.

Нельзя отождествлять частицу и волну. Корпускулярность природы электрона (фотоэффект).

 

  Потенциальный характер электростатического поля. Работа по переносу заряда в электростатическом поле. Потенциальная энергия заряда в электростатическом поле. Циркуляция вектора напряженности электростатического поля. Потенциал электрического поля. Разность потенциалов. Потенциал поля точечного заряда, шара. Потенциал поля, созданного системой зарядов. Эквипотенциальные поверхности. Принцип суперпозиции для потенциала. Связь между напряженностью и потенциалом. Градиент потенциала.