Атомная физика | Физические законы механики | Термодинамика | Электричество | Магнетизм | Оптика | Молекулярная физика | Физмат.ру
Математика 1 семестр | Математика 2 семестр | Математика 3 семестр | Математика 4 семестр | Интегралы | 1 курс

Электромагнетизм примеры решения задач Магнетизм

Пример 1. В одной плоскости с бесконечно длинным прямым проводом, по которому течет ток I=50 А, расположена прямоуголь­ная рамка так, что две большие стороны ее длиной l=65 см парал­лельны проводу, а расстояние от провода до ближайшей из этих сторон равно ее ширине. Каков магнитный поток Ф, пронизываю­щий рамку?

Решение. Магнитный поток Ф через поверхность площадью S определяется выражением

В нашем случае вектор магнитной индукции В перпендикулярен плоскости рамки. Поэтому для всех точек рамки Вn=В. Магнитная индукция В, создаваемая бесконечно длинным прямым проводником с током, определяется формулой

где x расстояние от провода до точки, в которой определяется В.

Для вычисления магнитного потока заметим, что так как В зависит от х и элементарный поток Ф будет также за­висеть от х, то

   dф=B(x)dS.

Разобьем площадь рамки на узкие элементарные площадки длиной l, шири­ной dx и площадью dS=ldx (рис. 24.2). В пределах этой площадки магнитную индукцию можно считать постоянной, так как все части площад­ки равноудалены (на расстояние х) от провода. С учетом сделанных замечаний элементарный магнитный поток можно записать в виде

  dФ=

Проинтегрировав полученное выражение в пределах от x1=a до х2=2а, найдем

|p2p.

Подставив пределы, получим

 Убедимся в том, что правая часть полученного равенства дает единицу магнитного потока (Вб): [m0] [I] [l]= Гн/м ×1 А ×1 м=1 Вб. Произведя вычисления по формуле (1), найдем Ф=4,5 мкВб

§3 Общие свойства волн. Волновой пакет.

1)Волновое уравнение

V – фазовая скорость

d2S/dx2 = d2S/V2dt2 волновое уравнение в одномерном случае

d2S/dx2 + d2S/dy2 + d2S/dz2 = d2S/V2dt2 3мерный случай

d2S/dx2 + d2S/dy2 + d2S/dz2 = ∆S – оператор лапласса

∆S = d2S/V2dt2 

Решение волнового уравнения.

2)Плоская монохроматическая волна.

(Фронт волны – плоскость, один цвет, ω=const, A=const)

S=ACos ω(t-(x/V))=ACos(ωt – (2Pix/TV))

ω = 2Pi/T VT= λ 2Pi/ λ = k

S=ACos(ωt –kx)

Смещение от положения равновесия точки с координатой x в момент времени t

3-хмерный случай:

S=ACos(ωt –kr) (k, r - вект)

k – волновой вектор

|k| = 2Pi/ λ

Смещение от положения равновесия точки характеризующейся вектором r в момент времени t

3)Принцип суперпозиции (наложения) волн.

Если в среде распространяется несколько волн, они перемещаются независимо друг от друга.

S = C1S1 + C2S2

S= ∑CnSn

Среда линейная (свойства не меняются под воздействием распространяющихся волн)

Волны взаимно независимы.

Смещение – геометрическая сумма смещений, возникших в отдельных волновых процессах.

4)Волновой пакет

- Суперпозиция волн, мало отличающихся по частоте и занимающая определенный объем в пространстве.

Волновой пакет:

Везде кроме ∆x A=0

Плоская монохроматическая волна – идеализированный объект:

В реальности мы имеем дело с волновыми пакетами.

S1=A0Cos(ωt –kx)

S2= A0Cos((ω+dω)t –(k+dk)x)

dω << ω

dk << k

S = S1 + S2 = 2A0Cos ((dωt – dkx)/2)Cos(ωt –kx)

Здесь 2A0Cos ((dωt – dkx)/2) – амплитуда (зависит от времени и координаты); Cos(ωt –kx) – фаза.

Это уже не гармонический волновой процесс. Если волновых процессов больше, тем уже волновой пакет.

Фазовая скорость V: ωt –kx = const

V=dx/dt=ω/k

Групповая скорость U (скорость перемещения центра энергии группы волн) :

dωt – xdk = const

U = dx/dt = dω/dk

Фазовая скорость не переносит энергию, групповая переносит.

U = dω/dk = d(Vk)/dk = V+ (kdV/dk) = VkdVd λ/d λ dk

λ = 2Pid λ/kdk = - 2Pi/k2

U = V + k (- 2Pi/k2) (dV/d λ) = V – (λdV/d λ) = U

Если dV/d λ > 0 тогда U<V нормальная дисперсия

Если dV/d λ < 0 то U>V аномальная дисперсия.

Если dV/d λ=0 то среда не дисперсирующая

Волновой пакет может перемещаться только в недисперсирующей среде (вакуум?)

В диспергирующей среде пакет расплывается.

  Потенциальный характер электростатического поля. Работа по переносу заряда в электростатическом поле. Потенциальная энергия заряда в электростатическом поле. Циркуляция вектора напряженности электростатического поля. Потенциал электрического поля. Разность потенциалов. Потенциал поля точечного заряда, шара. Потенциал поля, созданного системой зарядов. Эквипотенциальные поверхности. Принцип суперпозиции для потенциала. Связь между напряженностью и потенциалом. Градиент потенциала.