Атомная физика | Физические законы механики | Термодинамика | Электричество | Магнетизм | Оптика | Молекулярная физика | Физмат.ру
Математика 1 семестр | Математика 2 семестр | Математика 3 семестр | Математика 4 семестр | Интегралы | 1 курс

Электромагнетизм примеры решения задач Магнетизм

Пример 2. Определить индукцию В и напряженность Н магнит­ного поля на оси тороида без сердечника, по обмотке которого, со­держащей N=200 витков, идет ток I=5 А. Внешний диаметр d1 тороида равен 30 см, внутренний d2= 20 см.

Решение. Для определения напряженности магнитного поля внутри тороида вычислим циркуляцию вектора Н вдоль линии маг­нитной индукции поля:

Из условия симметрии следует, что линии магнитной индукции тороида представляют собой окружности и что во всех точках этой линии напряженности одинаковы. Поэтому в выражении циркуля­ции напряженность Н можно вынести за знак интеграла, а интегри­рование проводить в пределах от нуля до 2 pr, где r радиус ок­ружности, совпадающей с линией индукции, вдоль которой вычис­ляется циркуляция, т. e.

 (1)

С другой стороны, в соответствии с законом полного тока цир­куляция вектора напряженности магнитного поля равна сумме то­ков, охватываемых контуром, вдоль которого вычисляется цирку­ляция:

 (2)

Приравняв правые части равенств (1) и (2), получим

 (2) 

Линия, проходящая вдоль тороида, охватывает число токов, равное числу витков тороида. Сила тока во всех витках одинакова. Поэтому формула (3) примет вид 2prH=-NI, откуда

 (4) 

Для средней линии тороида r=1/2(R1R2)=1/4(d1+d2). Подставив это выражение r в формулу (4), найдем

 (5)

Магнитная индукция В0 в вакууме связана с напряженностью поля соотношением B0=m0H. Следовательно,

 (6)

Подставив значения величин в выражения (5) и (6), получим:

H=1,37 кА/м, B0=1,6 мТл.

 

§4 Свойства волн де Бройля.

1)Так как волны де Бройля – волновые процессы , то все характеристики присущие волнам, можно применить к волнам де Бройля.

A, ω, ν, фаза, пространственные координаты x,y,z, и время t.

Свойства отличаются от реальных волн:

2)Фазовая скорость – скорость распределения в пространстве фазы волны.

V~C для релятивистской частицы.

Vфаз = ω / k

ω - угловая частота, k - волновое число

= 2Pi ν λ/2Pi = ν λh/h = h ν / p

Т.к. по де Бройлю λ = h/p, λ/ h=p

h ν = ε – энергия фотона или кванта

Vф = E/p = mC2/mV = С2/V V<C

Vф > C

СТО – специальная теория относительности. Отличительное свойство, нехарактерное для других волн.

3) Групповая скорость – равно скорости с которой распространяются в пространстве группы волн.

Групповая скорость Vгр=U – скорость амплитуды группы волн.

Vгр = U = d(ωħ)/d(ħk) = dE/dP

E2 = E02 + p2C2

U = d(sqr(E02 + p2C2))/dp = 2pC2/2sqr(E02 + p2C2)= pC2/E = pC2/mC2= p/m = mV/m = Vчаст=U

U=Vчаст

=> любую частицу можно представить в виде волнового пакета.

4)Дисперсия волн де Бройля

Дисперсия – зависимость фазовой скорости от длины волны.

Vф=f(λ)

В вакууме все реальные волны с различными длинами волн распространяются с одинаковой скоростью, те в вакууме нет дисперсии. ε = 1 (в вакууме.)

Среды с ε > 1 диспергируют.

Рассмотрим волны де Бройля:

Vф = ω / k = E/p = (E02 + p2C2)/p = sqr((E02 + p2C2)/p2) = sqr((E0/ p2)+ C2)

λ =h/p => p = h/ λ

Vфаз = sqr((E02 λ2 / h2)+ C2) = f (λ)  - не зависит от среды

волн де Бройля наблюдается дисперсия даже в вакууме.

5)Волны де Бройля и второй постулат Бора. (правило квантования орбит)

Le (момент импульса орбит) = mVr = nħ – правило квантования орбит

ħ = h/2Pi , n=1,2,3… ,бесконечность - квантовое число

mVr = nh/2Pi

2PirmV = nh mV=p

2Pirh/ λ = nh

2Pir = n λ

C точки зрения гипотезы де Бройля 2й постулат Бора:

стац. Орбитами электрона в атоме называются такие орбиты на длине которых укладывается целое число волн де бройля.

n=4

  Потенциальный характер электростатического поля. Работа по переносу заряда в электростатическом поле. Потенциальная энергия заряда в электростатическом поле. Циркуляция вектора напряженности электростатического поля. Потенциал электрического поля. Разность потенциалов. Потенциал поля точечного заряда, шара. Потенциал поля, созданного системой зарядов. Эквипотенциальные поверхности. Принцип суперпозиции для потенциала. Связь между напряженностью и потенциалом. Градиент потенциала.