Электромагнитное взаимодействие, примеры решения задач

Машиностроительное черчение
Единая система конструкторской
документации
Машиностроительные построения
Инженерная графика
Сборочный чертеж
Начертательная геометрия
Геометрические основы
построения чертежа
Конспект лекций по начертательной
геометрии
История искусства
Стили в искусстве Готика
Русский балетный театр
Русское изобразительное искусство
ТКМ
Материаловедение
Основы теории сплавов
Теория конструктивных материалов
Сопромат
Сопративление метериалов
Лабораторные работы
Задачи строительной механики
Лекции физика
Физика
Электричество
Магнетизм
Оптика
Электромагнетизм
Молекулярная физика
Лекции МАИ
Лекции МАИ часть 2
Диэлектрики
Квантовая механика
Физические законы механики
Электромагнитное взаимодействия
Атомные станции
Атомная энергетика
Экология энергетики
Атомная и ядерная физика
Теплотехника
Термодинамика
Билеты к экзамену по физике
Задачи физика электротехника
Решение задач по ядерной физике
Электростатика
Геометрическая оптика
Тепловое излучение
Основы теории сплавов
Теория относительности
Физические основы механики
Законы идеальных газов
Электростатика
Основы электротехники
Постоянный ток
Электромагнетизм
Оптика
Законы теплового излучения
Ядерная физика
Строение атома и молекул
Задачи математика
Математика
1 семестр
2 семестр
3 семестр
4 семестр
Интегралы
Лекции по высшей математике
Вычисление площадей в
декартовых координатах
Аналитическая геометрия
 
Информатика
Восстановление сети после аварии
Основные понятия и категории
информатики
Сетевые операционные системы

 

 

Электромагнитные волны

 

 

Я уже говорил, что Максвелл усовершенствовал уравнения (добавил туда ток смещения), и получилась, наконец, замкнутая теория, и венцом постижения этой теории было предсказание существования электромагнитных волн. Надо понимать, что никто этих волн до Максвелла не видел, никто даже не подозревал, что такие вещи могут быть. Но, как только были получены эти уравнения, из них математически следовало, что должны существовать электромагнитные волны, и лет через двадцать после того, как это предсказание было сделано, они стали наблюдаемы, и тогда был триумф теории.

Уравнения Максвелла допускает существование вещи, которая называется электромагнитной волной. Но в природе оказывается так – то, что возможно в рамках правильной теории, то и на самом деле существует.

Сейчас мы должны будем усмотреть вслед за Максвеллом, что должны быть эти волны, то есть совершить такое математическое открытие, чтобы, глядя на уравнения Максвелла, сказать: «А, ну, конечно, должны быть волны».

Уравнения Максвелла в пустоте

Чем замечательна пустота? В пустоте нет зарядов , . Уравнения приобретают вид:

 

 

 

 

 

Ну, и сразу бросается в глаза замечательная симметрия, симметрия нарушается только тем, что в уравнении 4) константа размерная и знак. Размерная константа – несущественно, это связано с системой единиц, можно выбрать такую систему единиц, где эта константа просто единицей будет. Это дифференциальные уравнения, но положение осложняется тем, что переменные перекрещиваются. Поставим для начала скромную задачу – написать уравнение, которое содержало бы только одну неизвестную величину,  например. Стеклянные перегородки, форма

Значит, первая наша цель – исключить из уравнения 2) . Как исключит? А очень просто: мы видим, что в четвёртом уравнении сидит переменная , если мы на это уравнение подействуем векторно оператором , то в правой части выскочит

Второе уравнение даёт: . Добавляя четвёртое уравнение мы получаем:  или1)

 

.

 

Мы получили уравнение, которое утверждает, что вторая производная по времени от   связана со вторыми производными от компонент по координатам, то есть изменение величины  в данной точке со временем увязано с пространственным изменением этой величины.

 

 

Волновое уравнение и его решение

 

Вот чисто математическая проблема:

уравнение вида , где  – функция координат и времени,  и  константы, называется волновым уравнением.

Не будем решать уравнение в частных производных, а я сейчас предъявлю одно важное частное решение, и будет доказано, что оно действительно является решением.

Утверждение. Функция вида  удовлетворяет волновому уравнению (частное решение).

Частное решение, вообще-то, угадывается и проверяется методом тыка. Вот, мы сейчас подставим это решение в уравнение и проверим. Что уравнение утверждает? Что вторая производная по времени от этой функции совпадёт с пространственными производными.

Пишем: , .

Вот чем замечательна комплексная экспонента: можно было бы записать действительные синусы и косинусы, но дифференцировать экспоненты гораздо приятнее, чем синусы и косинусы.

Дальше: .

, значит, . Опять замечательная вещь: оператор  действует на функцию , эта функция просто умножается на , тогда немедленно находим повторное действие оператора1): .

Подставим в исходное уравнение: , отсюда получаем .

Мораль такая: функция вида  удовлетворяет нашему уравнению, но только при таком условии:

 

.

 

Это факт математический. Нам остаётся сообразить теперь, что эта функция изображает.

Если перейти в действительную область, то есть взять сужение этого множества функций на класс действительных функций, это будет решение такого типа: . Чтобы не мучиться с тремя переменными, можно это дело упростить: пусть , тогда . Заметим, что это никакое не ограничение общности, ось х мы всегда можем выбрать вдоль вектора . Мы получили функцию от двух переменных: . А теперь будем смотреть, что эта функция представляет.

 

Делаем мгновенную фотографию: фиксируем момент времени  и смотрим пространственную конфигурацию.

 

Период синуса 2π, ясно, когда х меняется на λ – длину волны (пространственный период), то синус должен измениться на 2π, мы имеем такое соотношение: . Мы проинтерпретировали константу k – волновое число, а вектор – волновой вектор. Эта мгновенная фотография показывает, как функция зависит от пространства.

 

 

Теперь будем следить за временным изменением, то есть сидим в точке х и смотрим, что делается с функцией  со временем. Фиксируем , тогда , значит, в фиксированной точке опять синусоидальная функция времени. Мы имеем, поскольку период синуса 2π, , то есть мы проинтерпретировали константу ,  называется частотой.

 

И остаётся, наконец, последнее: запустить обе переменные λ и t, что тогда эта функция будет изображать? Тоже легко понять.

Если , то , а  означает в свою очередь, что . Для событий, для которых координата – линейная функция времени , функция всё время одна и та же. Это можно проинтерпретировать так: если мы будем бежать вдоль оси х со скоростью , то мы будем всё время видеть перед собой одно и тоже значение этой функции.


Функция, которую мы получили – это синусоидальная волна, бегущая вправо вдоль оси х.

 

Если мы запустим х и t одновременно, то окажется, что эта синусоида бежит вдоль оси со скоростью , вот такое решение мы получили, ну и тогда понятно, почему это называется волной.

 

Вот то, что я говорил, что, если мы будем бежать с такой скоростью, мы будем видеть одно и то же значение функции, наглядно:

 

волны на воде. Для волны на воде – это отклонение волны от горизонтального уровня. Когда вы будете бежать вдоль этой волны со скоростью её распространения, то вы всё время будете видеть перед собой одну и ту же высоту над поверхностью воды.

 

Другой пример – звуковая волна.

 

Имеем синусоидальную звуковую волну. Как её создать? Источник колеблется с одной частотой (такой гул на одной частоте мы редко воспринимаем, он, кстати, очень раздражает). Если идёт такая волна определённой тональности, то, когда вы стоите, у вас в ухе давление со временем меняется и создаёт силу, которая давит на перепонку в ухе, колебания перепонки передаются в мозги, с помощью там разных передаточных устройств, и мы будем слышать звук. А что будет, если вы будете бежать вдоль волны со скоростью её распространения? Будет постоянное давление на перепонку и всё, не будет никакого звука. Правда, пример гипотетический, потому что, если в воздухе бежать со скоростью звука, то у вас будет так свистеть в ушах, что вам не будет не до восприятия этой струны.

 

Волна бежит со скоростью , но у нас такое соотношение: . Мы видим, что скорость – это та константа, которая стоит в уравнении.

 

Решением волнового уравнения является синусоидальная волна, бегущая со скоростью с.

 

А теперь вернёмся к уравнениям Максвелла. Мы там получили, что . Для магнитного поля аналогично. Такая функция   удовлетворяет этому уравнению. При условии, что . Значит, должны быть электромагнитные волны, распространяющиеся с такой скоростью . И вот тут уже круг замкнулся. Максвелл получил волновое уравнение и определил скорость волны, а к тому времени было известно экспериментальное значение скорости света, и обнаружилось, что эти скорости равны.

Введение

Электрический заряд

Электромагнитное поле

Уравнения поля

Полевые уравнения

Поток вектора

Циркуляция потока Основы молекулярной физики и термодинамики

Статическое электромагнитное поле (электростатика)

Общие свойства электростатического поля

Потенциал

Градиент

Работа по перемещению заряда по замкнутому контуру равна нулю

Физический смысл скалярного поля

Описание электростатического поля

Поля, создаваемые распределениями зарядов с хорошей симметрией

Цилиндрическая симметрия

Поле, создаваемое равномерно заряженной плоскостью

Поле, создаваемое произвольным распределением заряда

Поле точечного заряда

Поле системы точечных зарядов. Принцип суперпозиции

Потенциал системы точечных зарядов

Поле на большом расстоянии от ограниченного распределения заряда

Поле диполя

Сила, действующая на ограниченное распределение заряда во внешнем поле

Потенциальная энергия ограниченного распределения заряда во внешнем поле

Сила, действующая на диполь во внешнем поле

Вещество в электростатическом поле

Диэлектрики в электрическом поле

Поляризация диэлектрика

Связь поведения векторного поля на поверхности и поведения его внутри объёма

Пример решения задачи

Проводники в электростатическом поле

Некоторые утверждения

Силовые линии поля

Конденсаторы

Энергия конденсатора

Энергия электростатического поля

Плоский конденсатор

Стационарные магнитные поля

Уравнения Максвелла

Магнитные монополи

Магнитное поле бесконечного прямого проводника с током

Магнитное поле, создаваемое произвольным проводником с током

Магнитное поле кругового витка с током

Поле длинного соленоида

Магнитный момент

Магнитный момент витка с током

Сила, действующая на проводник с током в магнитном поле

Магнитный момент во внешнем поле

Магнитное поле в веществе

Магнитный момен

Квазистационарные поля

Явление электромагнитной индукции

Закон Ома

Закон сохранения заряда

Разрядка конденсатора

Явление самоиндукции

Энергия магнитного поля

Создание тока в цепи с индуктивностью

Нестационарные поля Ток смещения

Теория

Закон сохранения энергии для электромагнитного поля

Теорема Гаусса