Электромагнитное взаимодействие физика

 

Теперь мы имеем два описания электростатического поля. Либо мы задаём напряжённость , либо мы задаём в каждой точке потенциал . Слова «разность потенциалов» вы должны понимать буквально – это разность. Вот синоним разности потенциалов, который употребляется в электротехнике, - напряжение. Это означает, что многие из вас склонные употреблять слова «напряжение в цепи» не знали их значения. Это синоним разности потенциалов.

Что означают слова, что напряжение городской сети 220 вольт? Вот есть две дырки (разность потенциалов между дырками 220V), если вы вырвете заряд из одной и будете с ним ходить, а потом вернёте его в другую дырку, то работа поля будет равна V. Нагляднее пример с аккумулятором: вы взяли металлический шарик с клеммы аккумулятора, положили его в карман, ходили где-то с ним и потом приложили его ко второй клемме, то работа будет такая: V.

Там, где у нас было напряжение и разность потенциалов, добавьте такую формулу: .

Вот точка , вот точка , эта кривая , и смысл такой: вот эта формула – универсальный железный рецепт для нахождения разности потенциалов. Если вы когда-нибудь сталкиваетесь с требованием или потребностью найти разность потенциалов между двумя точками, значит, рука должна автоматически писать эту формулу, а когда мы её напишем, потом можно думать. Слова «разность потенциалов» должны просто рефлекторно вызывать вот эту формулу.

О чём речь? В чём рецепт? Если вам надо найти разность потенциалов между одной точкой и другой, когда напряжённость поля во всём пространстве задана (вектор напряжённости поля), рецепт: соедините точку 1 с точкой 2 кривой  и вычислите вот такой интеграл . Результат не зависит от выбора пути, ну, и поэтому его можно всегда выбирать наиболее разумным способом.

 

 Ну, к примеру, что значит разумная выборка? Вот допустим у вас силовые линии поля вот такие радиальные кривые:

 

 

 

 

И вам надо найти потенциал вот точка 1 ну, а, допустим, вот точка 2. Как выбрать кривую, идущую из 1 в 2? Первая мысль, конечно, взять её вот так: провести по линейке, по ней вычислять. Мысль, конечно, быстрая, но не очень правильная, потому что во всех точках этой кривой вектор переменный и направлен ещё под углом к прямой, и угол ещё меняется – взять интеграл сложно. Зато, через точку 2 проведёте сферу и путь такой: вдоль радиуса – раз, и потом вот по этой дуге – два. Вот разумный выбор кривой. Почему? Потому что вот на этой ветке вектор   всюду параллелен прямой, интеграл немедленно сводится просто к обыкновенному интегралу, а вот на этой ветке вектор  всюду перпендикулярен кривой, и она никакого вклада не делает. Вот разумный выбор кривой для нахождения разности потенциалов.

  Проанализируем экспоненциальный множитель . Подстановка вместо . Можно получить: . Физически реальными являются первое и последнее произведения. Первое из них соответствует затухающей волне, распространяющейся в положительном направлении оси z, а последнее — в отрицательном направлении оси z. Таким образом поле плоской волны, распространяющейся в среде с потерями, может быть представлено следующими соотношениями:

 (11)

 (12)

 В данном случае характеристическое сопротивление среды является комплексной величиной.

Целесообразно поступить следующим образом:

 (13)

Рассмотрим, как меняется фаза и  при изменении s = 0...¥.

С ростом проводимости характеристическое сопротивление по модулю убывает.

Вывод: По определению . В среде с проводимостью отличной от нуля при постоянной напряженности электрического поля с ростом проводимости увеличивается амплитуда магнитной компоненты .

Физически это можно объяснить:

в среде с проводимостью равной нулю присутствуют только токи смещения . Если проводимость равна нулю, то в среде появляются проводящие токи. Причем при неизменной напряженности электрического поля и диэлектрической проницаемости среды плотность тока остается неизменной.

Уравнения Гельмгольца. Практически все задачи электродинамики разделяют на 2 вида: 1. прямые задачи, в которых по заданному распределению сторонних источников необходимо определить соответствующее распределение электромагнитного поля. 2. обратные задачи, в которых по заданному распределению электромагнитного поля надо определить соответствующее распределение сторонних источников. В этом разделе рассмотрим основные методы решения прямых задач электродинамики применительно для гармонического ЭМ поля и однородных линейных изотропных сред.