Электромагнитное взаимодействие физика

 

Потенциал системы точечных зарядов.

Имеется система зарядов и т.д. И тогда для некоторой точки  мы напишем такую формулу: . Значит, вот такой рецепт для потенциала. Напряжённость равна сумме напряжённостей, потенциал равен сумме потенциалов.

 

Замечание. Практически всегда удобнее вычислять потенциал, а не напряжённость, по понятным причинам: напряжённость – это вектор, и векторы надо складывать по правилу сложения векторов, ну, правилу параллелограмма, это занятие, конечно, более скучное, чем складывать числа, потенциал – это скалярная величина. Поэтому, практически всегда, когда мы имеем достаточно плотное распределение заряда, ищем потенциал, напряжённость поля потом находим по формуле: .

Поле, создаваемое произвольным ограниченным распределением заряда

Ну, что тут означает эпитет «ограниченный»? То, что заряд локализован в конечной области пространства, то есть мы можем охватить этот заряд замкнутой поверхностью такой, что вне этой поверхности заряда нет. Понятно, что с точки зрения физики это не ограничение, ну, и, действительно, мы имеем дело практически всегда только с ограниченными распределениями, нет такой ситуации, чтобы заряд был размазан по всей вселенной, он концентрируется в определённых областях.

Вот такая проблема: область занята зарядом, по этой области размазан электрический заряд, мы должны полностью охарактеризовать этот заряд и найти создаваемое им поле. Что значит полностью охарактеризовать распределение заряда? Возьмём элемент объёма , положение этого элемента задаётся радиус-вектором , в этом элементе сидит заряд . Для того, чтобы найти поле, нам нужно знать заряд каждого элемента объёма, это означает, что нам нужно знать плотность заряда в каждой точке. Вот эта функция  предъявлена, она для нашей цели исчерпывающе характеризует распределение заряда, больше ничего знать не надо.

Пусть нас интересует поле в точке . А дальше принцип суперпозиции. Мы можем считать заряд dq, который сидит в этом элементе объёма, точечным. Мы можем написать сразу выражение для потенциала, который создаёт этот элемент в этой точке: , это потенциал, создаваемый элементом в точке . А теперь понятно, что полный потенциал в этой точке мы найдём суммированием по всем элементам. Ну, и напишем эту сумму как интеграл: .

 

Этот рецепт срабатывает железно для любого предъявленного распределения заряда, никаких проблем, кроме вычисления интеграла, нет, но компьютер такую сумму посчитает. Напряжённость поля находится: . Когда интеграл вычислен, то напряжённость находится просто дифференцированием.

Уравнения баланса для комплексной мощности.

 В радиотехнике часто пользуются понятием комплексной мощности. Так, если рассматривается гармонический процесс, то комплексную мощность сторонних источников можно записать:

 Получим уравнение баланса для комплексных мощностей гармонического электромагнитного процесса. Уравнение баланса для комплексной мощности получается аналогично уравнению баланса для среднего за период значения. Удобно записать уравнение Максвелла сразу для комплексно-сопряженных величин:

 (1)

 Вновь полагаем, что потери в среде обусловлены конечной проводимостью:

 

 Возьмем комплексное сопряжение от всех комплексных величин:

 (2)

 Умножим скалярно правую и левую части соотношения (1) на . Получим:

 (3)

Воспользуемся векторным тождеством, из которого следует:

 Выразим из тождества :

, тогда:

Будем предполагать, что магнитные потери в среде отсутствуют, тогда . Подставим  в соотношение (3):   (4)

Проинтегрируем по объему:

 (5)

Поделим на 2 и учтем, что во втором слагаемом стоит разность энергий

 (6)

 (7)

Выражение (7) запишем в виде системы из 2-х уравнений: одно устанавливает связь между активными мощностями, другое — между реактивными.

 Получим:  (8)

 (9)

 Как мы и ожидали, соотношение (8) совпадает с уравнением для средних за период мощностей. Из (9) следует, что реактивная мощность сторонних источников равна умноженной на 2w разности средних за период значений энергий + реактивный поток энергии, через поверхность S. Рассмотрим важное приложение к (8) и (9). Будем предполагать, что объем V, для которого составлено уравнение баланса, является изолированной системой. В этом случае комплексный поток мощности, через поверхность S, равен нулю и уравнение баланса:

 (10)

 В этом случае происходит колебательный обмен энергией между электрическим и магнитным полями, т.е. один момент существует только электрическое поле, потом и то и другое, потом только магнитное и т.д. В том случае когда

 (11)

мощность сторонних источников становится чисто активной:

 (12)

и обмен энергиями происходит без участия сторонних источников. Если (11) не соблюдается, то для этого обмена необходимо участие сторонних источников. Изолированная система, в которой мощность сторонних источников чисто активна, т.е. выполняется равенство (11), называется резонирующей изолированной системой, а условие (11) называется условием резонанса. Для характеристики изолированной колебательной системы вводят понятие добротности.

 Под добротностью Q понимают:

 (13)

 (14)

 Средняя за период энергия электрического поля:

При резонансе , тогда 

 Соотношения (6), (7) были получены при условии, что . Потери в среде обусловлены конечной проводимостью

В этом случае общее выражение для баланса комплексных мощностей остается неизменным, но конкретное, аналитическое выражение для слагаемых, изменится. Мощность потерь записывается следующим образом:

 В заключение этого параграфа приведем выражение для скорости распределения энергии, записанное через комплексные амплитуды:

, где DS — поперечное сечение.

В том случае, когда составляющие неизменны, получаем: 

Уравнения Гельмгольца. Практически все задачи электродинамики разделяют на 2 вида: 1. прямые задачи, в которых по заданному распределению сторонних источников необходимо определить соответствующее распределение электромагнитного поля. 2. обратные задачи, в которых по заданному распределению электромагнитного поля надо определить соответствующее распределение сторонних источников. В этом разделе рассмотрим основные методы решения прямых задач электродинамики применительно для гармонического ЭМ поля и однородных линейных изотропных сред.