Строймех
Сопромат
Математика

Театр

Карта

Электромагнитное взаимодействие физика

Уравнения поля

 Могу ли я конкретно, физически соорудить поле? Ответ, вообще говоря, нет. Не всякое векторное поле  может представлять реальное электрическое поле , и не всякое векторное поле   представляет магнитное поле . Реальное электромагнитное поле обладает структурой, и эта структура и выражается полевыми уравнениями, которые выступают в роли фильтров.

 Электромагнитное поле создаётся заряженными частицами, или, иначе говоря, заряженные частицы являются источниками электромагнитного поля.

Основная задача теории:

предъявлено распределение заряженных частиц, и мы должны найти поле, которое создаётся этими частицами.

Вопрос: как можно описать распределение частиц, как предъявить распределение зарядов? Кстати, никакие другие свойства кроме заряда не важны. Можно взять какую-то частицу, измерить её заряд и повесить на неё бирку, и так со всеми частицами. Но технически это сделать невозможно.

  Вот имеем некоторую систему координат. В точке с радиус-вектором   выбираем некоторый элемент объёма Vi, определяем заряд этого элемента объёма. Пусть внутри этого элемента объёма находится заряд qi. Теперь определяем такую величину: . Будем уменьшать объём, при этом окажется, что отношение  стремится к некоторому пределу. Считается, что элемент объёма очень мал, но число частиц в нём велико, такова реальность.

 

 

Определённая выше функция , называется плотностью заряда. Понятно, что всё распределение заряда описывается функцией . Если имеются отдельные точечные заряды, то они подпадают под эту функцию. И она такова, что, если в точке  находится точечный заряд, то тогда = . Скалярная функция позволяет полностью описать мир с точки зрения электродинамики. Но не только она, скорость заряда тоже влияет на электромагнитное поле. Так как магнитное поле создаётся движущимися зарядами, нам нужно учесть ещё движение, и для этого нужна ещё одна характеристика. Берём в нашей системе координат точку  и вычисляем такую величину: . Формулы надо научиться читать повествовательно! В этом случае: ловите все частицы этого объёма, заряд частицы умножаем на её скорость, делим на объём, а потом переходим к пределу, получаем некоторый вектор и этот вектор приписываем точке, в окрестности которой производили измерения... Получаем векторное поле.  - плотность тока. Кстати, в механике аналогичная величина - плотность импульса. Вместо заряда возьмём массу, получим суммарный импульс, если разделить его на объём, получим плотность импульса.

  Источники электромагнитного поля полностью характеризуются скалярной функцией  и векторной функцией . Вот я уже говорил там о цветочках в саду, птички летают… с точки зрения электродинамики система должна быть описана функциями  и . Действительно, если дать эти функции, то по ним можно было бы дать цветную картинку, кстати, телевизор это и делает, а частью этого электромагнитного поля являются волны, которые попадают вам в глаз. Задание этих функций задаёт поле, потому что, если известны источники, то известно и поле.

Электродинамические потенциалы гармонического поля.

 Относительно мгновенных значений векторов поля задачи решают очень редко, из-за сложности их определения. Обычно задачи решают для гармонических полей с использованием метода комплексных амплитуд. При решении любых электродинамических задач очень редко используют непосредственно уравнения Максвелла. Обычно уравнения Максвелла стараются свести к известным формам дифференциальных уравнений.

 Рассмотрим гармонический электромагнитный процесс. Запишем уравнения Максвелла для комплексных амплитуд:

 (1)

 (2)

Возьмем ротор от правой и левой части соотношения (1). Получим:

 (3)

Воспользуемся известным тождеством: 

Из 4-ого уравнения Максвелла:  следует, что:

 (4)

Подставим (4) и (2) в соотношение (3) и получим:  или

 (5)

В результате проведенных преобразований мы получили неоднородное дифференциальное уравнение, которое в математической физике называется неоднородным уравнением Гельмгольца. Это уравнение описывает волновые процессы. Векторное дифференциальное уравнение (5) можно записать в виде трех уравнений проекций:

 (6)

Аналогичные уравнения можно получить и для вектора напряженности поля.

 (7)

Меняя везде знаки, получим:

 (8)

 При анализе сред, в которых отсутствуют сторонние источники, неоднородные уравнения (5), (8) преобразуются в однородные:

 (9)

Соотношения (5), (8), (9) называются уравнениями Гельмгольца относительно векторов поля.

Уравнения Гельмгольца. Практически все задачи электродинамики разделяют на 2 вида: 1. прямые задачи, в которых по заданному распределению сторонних источников необходимо определить соответствующее распределение электромагнитного поля. 2. обратные задачи, в которых по заданному распределению электромагнитного поля надо определить соответствующее распределение сторонних источников. В этом разделе рассмотрим основные методы решения прямых задач электродинамики применительно для гармонического ЭМ поля и однородных линейных изотропных сред.