Законы радиоактивного распада

Машиностроительное черчение
Единая система конструкторской
документации
Машиностроительные построения
Инженерная графика
Сборочный чертеж
Начертательная геометрия
Геометрические основы
построения чертежа
Конспект лекций по начертательной
геометрии
История искусства
Стили в искусстве Готика
Русский балетный театр
Русское изобразительное искусство
ТКМ
Материаловедение
Основы теории сплавов
Теория конструктивных материалов
Сопромат
Сопративление метериалов
Лабораторные работы
Задачи строительной механики
Лекции физика
Физика
Электричество
Магнетизм
Оптика
Электромагнетизм
Молекулярная физика
Лекции МАИ
Лекции МАИ часть 2
Диэлектрики
Квантовая механика
Физические законы механики
Электромагнитное взаимодействия
Атомные станции
Атомная энергетика
Экология энергетики
Атомная и ядерная физика
Теплотехника
Термодинамика
Билеты к экзамену по физике
Задачи физика электротехника
Решение задач по ядерной физике
Электростатика
Геометрическая оптика
Тепловое излучение
Основы теории сплавов
Теория относительности
Физические основы механики
Законы идеальных газов
Электростатика
Основы электротехники
Постоянный ток
Электромагнетизм
Оптика
Законы теплового излучения
Ядерная физика
Строение атома и молекул
Задачи математика
Математика
1 семестр
2 семестр
3 семестр
4 семестр
Интегралы
Лекции по высшей математике
Вычисление площадей в
декартовых координатах
Аналитическая геометрия
 
Информатика
Восстановление сети после аварии
Основные понятия и категории
информатики
Сетевые операционные системы

 

Радиоактивность

Задача 2.1 Найти вероятность распада радиоактивного ядра за промежуток времени t, если известна его постоянная распада

Задача 2.2 Показать, что среднее время жизни радиоактивных ядер τ = 1/λ, где λ – их постоянная распада.

Задача 2.3 Какая доля первоначального количества ядер 90Sr: а) останется через 10 и 100 лет; б) распадется за одни сутки; за 15 лет?

Задача 2.4 Вычислить постоянную распада, среднее время жизни и период полу распада радиоактивного нуклида, активность которого уменьшается в 1,07 раза за 100 дней.

Задача 2.5 Определить возраст древних деревянных предметов, у которых удельная активность 14С составляет 3/5 удельной активности этого же нуклида в только что срубленных деревьях.

Задача 2.6 Свежеприготовленный препарат содержит 1,4 мкг радиоактивного нуклида 24Nа. Какую активность он буде иметь через сутки?

Задача 2.7 Определить число радиоактивных ядер в свежеприготовленном препарате 82Br, если известно, через сутки его активность стала равной 7,4·10-9 Бк (0,4 Ки).

Задача 2.8 Вычислить удельную активность чистого 239Pu.

Задача 2.9 Сколько миллиграмм β-активного 90Sr следует добавить к 1 мг неактивного стронция, чтобы удельная активность препарата стала равной 6,8 Ки/г?

Задача 2.10 В кровь человека ввели небольшое количество раствора, содержащего 24Nа активностью А0 = 2,1·103 Бк. Активность одного см-3 крови, взятой через t = 5 ч после этого, оказалась равной а = 0,28 Бк/см3. Найти объем крови человека

Задача 2.11 При радиоактивном распаде ядер нуклида А1 образуется радионуклид А2. Их постоянные распада равны λ1 и λ2. Полагая, что в начальный момент препарат содержал только ядра нуклида А1 в количестве N01, определить:

а) количество ядер нуклида А2 через промежуток времени t;

б) промежуток времени, через который количество ядер нуклида А2 достигнет максимума; станок плазменной резки металла купить

в) в каком случае может возникнуть состояние переходного равновесия, когда относительное количество обоих нуклидов будет оставаться постоянным. Чему равно это отношение?

Задача 2.12 226Ra, являясь продуктом распада 238U, содержится в последнем в количестве одного атома на каждые 2,80·106 атомов 238U. Найти период полураспада 238U, если известно, что он значительно больше периода полураспада 226Ra, который равен 1620 годам.

Задача 2.13 При β-распаде 112Pd возникает β-активный нуклид 112Ag. Их периоды полураспада равны соответственно 21 и 3,2 ч. Найти отношение максимальной активности нуклида 112Pd к первоначальной активности препарата, если в начальный момент препарат содержал только нуклид 112Ag. 

Задача 2.14 Радионуклид испытывает превращение по цепочке

Задача 2.15 Определить массу свинца, который образуется из 1,0 кг 238U за период, равный возрасту Земли (2,5·109 лет).

Задача 2.16 Радионуклид 27Mg образуется с постоянной скоростью q = 5,0·1010 ядер в секунду. Определить количество ядер 27Mg, которое накопится в препарате через промежуток времени

Задача 2.17 Радионуклид 124Sb образуется с постоянной скоростью q = 1,0·109 ядер в секунду. С периодом полураспада Т1/2 = 60 сут он превращается в стабильный нуклид 124Те. Найти:

а) через сколько времени после начала образования активность 124Sb станет А = 3,7·108 Бк.

б) какая масса нуклида 124Те накопится в препарате за четыре месяца после начала его образования.

Задача 2.18 Радионуклид 138Xe, который образуется с постоянной скоростью q = 1,0·109 ядер в секунду, испытывает превращение по схеме

Задача 2.19 Покоящиеся ядро 213Ро испустило α-частицу с кинетической энергией Тα = 8,34 МэВ. При этом дочернее ядро оказалось непосредственно в основном состоянии. Найти полную энергию Еα, освобождаемую в этом процессе. Какую долю этой энергии составляет кинетическая энергия дочернего ядра? Какова скорость отдачи дочернего ядра.

Задача 2.20 Распад 226Th ядер происходит из основного состояния и сопровождается испусканием α-частиц с кинетическими энергиями 6,33; 6,23; 6,10 и 6,03 МэВ. Рассчитать и построить схему уровней дочернего ядра.

Связь между продольными и поперечными составляющими полей в регулярной направляющей системе

Рассмотрим произвольную бесконечно длинную направленную систему, ориентированную вдоль оси  Z . Будем полагать, что направленная система не вносит потерь и однородна, т.е.:

форма конечного сечения не зависит от координаты Z;

параметры среды, в которой распространяется ЭМП, и граничные условия, которым удовлетворят поле, не зависят от координаты Z .

При отсутствии сторонних источников и должны удовлетворять однородным уравнениям Гельмгольца:

   

Зависимость иот координаты Z описывается множителем ,

где h - постоянная распространения / или фазовая постоянная / в ЛП .

  Z   1

  2

  x и h - координаты полезного сечения ЛП.

Подставляя (1) и (2) в однородные уравнения Гельмгольца при  и   получим:  3

  4

Обозначение:  5 , 

 где g - волновое число.

Каждое из уравнений (3) и (4) эквивалентно трем скалярным уравнениям для продольной и двух поперечных составляющих. Поперечные составляющие можно выразить через продольные с помощью соотношений, вытекающих из дифференциальных уравнений Максвелла.

Согласно (1) и (2) дифференцирование по Z эквивалентно умножению вектора на множитель (-jh). Преобразуем однородные уравнения Максвелла:

  6

Решая систему (6) относительно и, получаем:

 8

 9

Аналогично, из (8) и:

 10

 

 11

Система уравнений (8) - (11) связывает поперечные и продольные составляющие поля в декартовой системе координат . Для выражения этой связи в произвольной системе координат перейдем к векторной форме уравнений .Введем вектор . Подставляя в это выражение вместо и  их значения из (8) - (11) , получим :

.

Введя обозначение  

и учитывая, что  

получим:  12

Аналогично, получается равенство:

   13

Т.о. для нахождения структуры полного поля необходимо решить с учетом граничных условий два дифференциальных уравнения:

   14 

  15

и воспользоваться равенствами (12) и (13) для определения поперечных составляющих .

12.4. Критическая частота. Критическая длина волны.

 h является вещественной величиной,

  если  1

 и мнимой величиной, если   2

В первом случае фаза изменяется вдоль оси Z по линейному закону, что является признаком распространения волны с постоянной фазовой скоростью вдоль этой оси . Во втором случае вдоль оси Z фаза остается постоянной , а амплитуда убывает по экспоненте , что является признаком отсутствия переноса энергии вдоль направляющей системы .

Частота определяется из условия  3 , 

называется критической .  4

Соответствующая этой частоте критическая длина волны равна:

  5

Тогда  6

 где  - волновое число,

 а  - длина волны в среде с параметрами  и .

Согласно (1) свободное распространение волны по направляющей системе имеет место лишь на частотах, превышающих критическую .

Назовем длиной волны  в направляющей системе минимальное расстояние между поперечными сечениями, соответствующими различным значениям координаты Z , в которых колебания сдвинуты по фазе на 2p . Т.к зависимость составляющих поля от координаты Z описывается выражением : , то

  7

Раздел13. Поперечные электромагнитные волны

(Еz =0 , Нz =0) Критическая длина волны.

 Полагая в (12.3.  12) и (12.3. 13) Еz = Нz =0 , получаем

 ,  1

что удовлетворяет при и ,

если только  2

Согласно (12.4. 4) , (12.4. 5) этим значениям g соответствуют  и . Следовательно, в тех направляющих системах, где возможно распространение волн Т , эти волны существуют на любой частоте.