Взаимодействие нейтронов с ядрами

Строймех
Сопромат
Математика

Театр

Карта

Формула Брейта-Вигнера

Задача 4.1 Получить с помощью квазиклассических рассуждений выражение для прицельного параметра b бомбардирующего нейтрона. Вычислить первые три возможных значения b для нейтронов с кинетической энергией Tn = 1,00 МэВ.

Задача 4.2 Найти максимальное значение bmax прицельного параметра при взаимодействии нейтрона с кинетической энергией Tn = 5,00 МэВ с ядрами Ag.

Задача 4.3 Показать, что для нейтронов с длиной волны геометрическое сечение взаимодействия с ядром , где R – радиус ядра. Оценить эту величину для нейтронов с энергией Tn = 10 МэВ, налетающих на ядро Au.

Задача 4.4 Оценить максимальную величину центробежного барьера для нейтронов с кинетической энергией Tn = 7,0 МэВ при взаимодействии с ядрами Sn.

Задача 4.5 Найти вероятность того, что в результате взаимодействия медленных нейтронов (l = 0) с ядрами, спин которых I = 1, составное ядро образуется в основном состоянии со спином J = 3/2. Считать, что спины нейтронов и ядер до взаимодействия имеют всевозможные взаимные ориентации.

Задача 4.6 Исходя из формулы Брейта-Вигнера для сечения σа  образования составного ядра, получить выражение для сечений процессов упругого рассеяния σnn и радиационного захвата σ нейтрона.

Задача 4.7 Выразить с помощью формулы Брейта-Вигнера сечение радиационного захвата нейтрона σот его кинетической энергии Tn, если известно сечение σ0 данного процесса при Tn = Т0 и значения Т0 и Г.

Задача 4.9 Найти с помощью формулы (4.7.1) Брейта-Вигнера для сечения радиационного захвата нейтрона отношение σmin/σ0, где σmin – минимальное сечение процесса (n,γ) в области Tn < T0 (см. рис. 4.1); σ0 – сечение этого процесса при Tn = T0, если Г << Т0.

Задача 4.10 Какова должна быть толщина d кадмиевой пластинки, чтобы параллельный пучок тепловых нейтронов при похождении через нее уменьшился в 100 раз?

Задача 4.11 В центре сферического слоя графита, внутренний и внешний радиусы которого R1 = 1,0 см и R2 = 10,0 см находится точечный источник нейтронов с кинетической энергией Тn = 2 МэВ. Интенсивность источника I0 =2,0·104 с-1. Сечение взаимодействия нейтронов данной энергии с ядрами углерода σ = 1,6 б. Определить плотность потока нейтронов Фn(R2) на внешней поверхности графита, проходящих данный слой без столкновений.

Задача 4.12 Узкий пучок нейтронов с кинетической энергией 10 эВ проходит через счетчик длиной l = 15 см вдоль его оси. Счетчик наполнен газообразным BF3 при нормальных условиях (бор природного изотопного состава). Определить эффективность регистрации нейтронов с данной энергией, если известно, что сечение реакции (n,α) подчиняется закону 1/v.

Задача 4.13 Небольшой образец ванадия 51V массой m = 0,5 г активируется до насыщения в поле тепловых нейтронов. Непосредственно после облучения в течение t = 5,0 мин было зарегистрировано = 8,0·109 импульсов при эффективности регистрации ε = 1,0·10-2. Определить концентрацию nn нейтронов, падающих на образец.

Задача 4.14 Какую долю η первоначальной кинетической энергии Т0 теряет нейтрон при: а) упругом лобовом столкновении с первоначально покоившимися ядрами 2Н, 12С и 235U; б) упругом рассеянии под углом   на первоначально покоившемся дейтоне, если угол = 30, 90 и 150º?

Задача 4.15 Нейтроны с кинетической энергией Т0 упруго рассеиваются на ядрах с массовым числом А. Определить: а) энергию Т нейтронов рассеянных под углом  в СЦИ; б) долю нейтронов, кинетическая энергия которых в результате однократного рассеяния лежит в интервале (Т, Т + dТ), если рассеяние в СЦИ изотропно.

Задача 4.16 Нейтроны испытывают рассеяние на первоначально покоившихся протонах. Считая это рассеяние изотропным в СЦИ, найти с помощью векторной диаграммы импульсов:

Метод краевых волн

 Под физической теорией дифракции волн подразумевают методы решения дифракционных задач, в которых используются различного рода приближения при описании токов на рассматриваемой поверхности. Математическая теория дифракция включает строгие методы решения дифракционных задач. Метод краевых волн в физической теории дифракции является дальнейшим развитием метода физической оптики и предназначен для решения дифракционных задач на выпуклых металлических телах, имеющих изломы (ребра).

 Рассмотрим основные принципы. Пусть плоская электромагнитная волна падает на идеально проводящее тело, находящееся в свободном пространстве. Под действием волны на поверхности тела наводятся поверхностные электрические токи. В физической оптике показано, что в каждой точке поверхности тела плотность тока определяется по формуле 

 1

— единичная нормаль к поверхности тела.

— напряженность магнитного поля падающей волны.

 Характерная особенность заключается в том, что это равенство выполняется только для освещенной части поверхности. На теневой части поверхности . В действительности плотность тока отличается от определяемой соотношением (1). Для уточнения плотности тока ее записывают в виде суммы:

 2

 — равномерная часть поверхностного тока (определяется приближенным методом физической оптики);

 — добавочная или неравномерная часть поверхностного тока (дополняющее значение поверхностного тока до более точного значения).

 Истинное значение поверхностного тока можно было бы установить в результате строгого решения дифракционных задач. Чаще всего это является невозможным, поэтому прибегают к приближенным методам. В частности, метод краевых волн позволяет определить неравномерную часть  поверхностного тока в случае, если на металлическом рассматриваемом теле имеются изломы и ребра. Распределение тока на малом элементе поверхности вблизи ее излома можно считать приближенно таким же как на идеально проводящем металлическом клине, образованном плоскостями, касательными к поверхности тела в рассматриваемой точке.

 Модель в виде идеально проводящего клина используется потому, что для него существует строгое решение задачи. Впервые эту задачу решил Уфимцев. Он получил и исследовал решение задачи и установил, что неравномерная часть поверхностного тока в этом случае имеет вид краевых волн, распространяющихся от ребра (излома) и быстро затухающих с удалением от излома.

 Определив указанным выше способом неравномерную часть поверхностного тока, т.е. определив в начальной точке плотность полного тока. можно найти поле рассматриваемое телом в каждой точке пространства. 

 Полученное решение в этом случае является более точным по сравнению с решением, полученным методом Гюйгенса-Кирхгофа. Метод краевых волн  позволяет учесть в задачах дифракции взаимное влияние изломов. В этом случае волна, соответствующая неравномерной части, распространяясь от начального излома в сторону, к соседнему, испытывает на нем дифракцию, возбуждая вторичную волну неравномерного поверхностного тока. Т.е. этот метод позволяет уточнить решения задачи дифракции на теле с множественными изломами.