Атомная физика | Физические законы механики | Термодинамика | Электричество | Магнетизм | Оптика | Молекулярная физика | Физмат.ру
Математика 1 семестр | Математика 2 семестр | Математика 3 семестр | Математика 4 семестр | Интегралы | 1 курс

Тепловое излучение начало

 

Преобразования Лоренца

 

  Y    Y’

           

  K    K’

 

                    v

 

  O     O’              X,X’

До сих пор у нас не возникало необходимости переходить из одной системы отсчета в другую при больших скоростях относительного движения этих систем. Потому мы пользовались преобразования Галилея, не учитывающими релятивистские эффекты. Но теперь нам понадобятся преобразования Лоренца. При движении со скоростью v некоторой системы K’ вдоль оси OX “неподвижной” системы K они имеют вид:

 

;       ;

;        .

 

Мы выписали прямые и обратные преобразования. Отмеченные штрихами величины относятся к движущейся системе отсчета.

 

Чтобы немного привыкнуть к этим преобразованиям, решим две частные задачи, не имеющие прямого отношения к волнам.

Рассмотрим движение некоторого стержня вдоль оси OX. Свяжем с ним движущуюся систему отсчета K’. Его длина в этой системе отсчета . Заметим, что, поскольку стержень в этой системе неподвижен, координаты его концов могут быть определены в произвольные моменты времени - координаты не изменяются во времени. Обратите внимание на это существенное обстоятельство.

Получим теперь выражение для длины стержня в неподвижной системе отсчета. Запишем такое выражение:

 

.

 

Чтобы определить длину движущегося стержня в неподвижной системе отсчета, нам следует определить координаты его концов в один и тот же момент времени, т.е. положить . При этом условии  - длина стержня в неподвижной системе отсчета. Таким образом, длина движущегося стержня оказывается меньше его “собственной” длины:

 

.

 

В таком случае говорят о лоренцовом сокращении длины движущегося стержня.

Предположим теперь, что в неподвижной системе отсчета произошли два события, разделенные промежутком времени . Например, это может быть промежуток времени между рождением и распадом некоторой нестабильной частицы. Считая, что частица движется со скоростью v, свяжем с ней систему отсчета. В этой системе промежуток времени между событиями, которые, заметим, в ней произошли в одной и той же точке с координатой x’, будет:

 

;

 

.

 

В таком случае говорят  о замедлении хода часов в движущейся системе отсчета.

Это замедление хода часов (или хода времени) приводит к любопытному эффекту. Исследуя некоторую нестабильную частицу, мы можем измерить ее “время жизни” t¢ которое является характеристикой частицы, а не системы отсчета. Если такая частица после рождения движется со скоростью v, мы можем подумать, что до момента распада она пройдет путь vt¢ - от рождения и до распада в связанной с частицей системе отсчета пройдет время t¢. Между тем пройденный за это время путь мы, естественно, измеряем в неподвижной системе отсчета. И тогда этот путь окажется намного больше, если скорость частицы близка к скорости света:

 

 .

 

Так что, измеряя пройденное от момента рождения частицы до ее распада расстояние, можно непосредственно проверить вывод о замедлении хода времени в движущейся системе отсчета.

Аналогично электрическому, для магнитного поля выполняется принцип суперпозиции: магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каждым током или движущимся зарядом в отдельности:

принцип суперпозиции магнитных полей(3)

Используя данные формулы для расчет характеристик магнитного поля (В и Н) в общем случае достаточно сложен. Однако если распределение тока имеет какую-либо симметрию, то применение закона Био — Савара — Лапласа совместно с принципом суперпозиции дает возможность просто рассчитать некоторые поля. Рассмотрим два примера.

1. Магнитное поле прямого тока — тока, текущего по тонкому прямому бесконечному проводу (рис. 2).

магнитное поле прямого кругового тока

 

В произвольной точке А, удаленной на расстояние R от оси проводника, векторы dB от всех элементов тока имеют одинаковое направление, которое перпендикулярно плоскости чертежа («к вам»). Значит, сложение всех векторов dB можно заменить сложением их модулей. За постоянную интегрирования возьмем угол α (угол между векторами dl и r) и выразим через него все остальные величины. Из рис. 2 следует, что

для расчета магнитного поля прямого тока

(радиус дуги CD вследствие малости dl равен r, и угол FDC по этой же причине можно считать прямым). Подставив эти формулы в (2), получим, что магнитная индукция, которая создаётся одним элементом проводника, равна

магнитное поле прямого тока(4)

Поскольку угол α для всех элементов прямого тока изменяется в пределах от 0 до π, то, согласно (3) и (4),

магнитное поле прямого тока

Значит, магнитная индукция поля прямого тока

магнитная индукция поля прямого тока(5)

Распределение молекул идеального газа по импульсам и скоростям (распределение Максвелла). Вычисление средней арифметической, средней квадратичной и наиболее вероятной скоростей. Теорема Больцмана о равномерном распределении энергии по степеням свободы молекулы. Внутренняя энергия идеального газа - расчет через число степеней свободы его молекул. Классическая теория теплоемкости идеального газа и ее недостатки. Средняя длина свободного пробега и среднее число столкновений молекул идеального газа в единицу времени. Газокинетический диаметр молекул и его зависимость от температуры.