Инженерная графика
Физика
Атомные станции
Строймех
ТКМ
Начертательная геометрия
Экология энергетики
Сопромат
Готика
Черчение
Теплотехника
Математика

Театр

Конспект лекций
Атомная энергетика
Карта

Законы геометрической оптики начало

 

Прямолинейность распространения света. Принцип Ферма

Физика в разных своих разделах часто занимается вопросами весьма несхожими. В частности оптика никак не представляется логическим продолжением предыдущих разделов, которыми мы с Вами занимались. И хотя свет представляет собой электромагнитную волну, разговором о которой мы закончили предыдущий раздел “Электричество и магнетизм”, вопросами электромагнитной природы света мы будем заниматься не слишком много, нас скорее будет интересовать собственно волновая природа света, а не то, что это волна электромагнитная.

В свою очередь мы не станем подробно говорить об оптике геометрической. Но основные ее законы, видимо, обсудить необходимо. Первым из них является закон прямолинейности распространения света. Выглядит он чрезвычайно простым - между двумя точками свет распространяется вдоль прямой. И достаточно естественно возникает вопрос такого рода: “А как же иначе?”

Действительно, такой “способ” распространения света кажется более чем естественным. Но в дальнейшем возникнут достаточно серьезные трудности для понимания - когда мы встретимся с отклонениями от этого закона. Да и едва ли Вам часто приходилось наблюдать прямолинейное распространение волны - прямолинейность распространения и волновая природа, пожалуй, представляются скорее несовместимыми. Разве что такие два примера.

Примерно плоскими являются морские волны, рожденные ветром и пришедшие к нам с очень большого расстояния. Большое расстояние и плоский характер волны представляются неразрывно связанными. И еще такой пример. Возможно, в кинофильмах о войне Вам случалось обратить внимание на непривычную для современного взгляда форму “динамиков” (тогда они назывались репродукторами) - этакая плоская “тарелка”. В те времена еще не было создано мощных источников звука и достаточно хорошая слышимость достигалась за счет создания по возможности узко направленной в нужном направлении плоской звуковой волны, амплитуда колебаний которой слабо уменьшается с расстоянием.

 

Прежде всего следует подробнее поговорить о том, что именно мы понимаем под направлением или путем распространения света. Важным здесь оказывается понятие луча. Часто говорят, что, например, солнечный луч можно легко увидеть в слегка запыленном затемненном помещении, если свет проникает в него через небольшое отверстие. Или в тени дерева мы можем видеть отдельные солнечные “зайчики” - места падения лучей, прошедших через промежутки между листьями кроны дерева. Такой “наблюдаемый” луч оказывается прямолинейным и о его отражении и преломлении обычно идет речь при постановке экспериментов.

Но мы знаем, что свет имеет волновую природу и более строго лучем называется кривая (прямая в частном случае), проведенная перпендикулярно касательным к фронтам волны в разных точках. Это уже достаточно абстрактное понятие, то, что мы можем увидеть в слегка запыленной комнате, лишь приблизительно соответствует такому пониманию луча.

 

 

 



 A *

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                    * B

Итак, если нет никаких препятствий и среда однородна, то луч света прямолинеен. На рисунке мы соединяем точки A и B прямой и говорим, что свет распространяется вдоль этой прямой. Изображенные пунктирными отрезками касательные к фронтам волны перпендикулярны лучу. Сами фронты не обязательно плоские.

Заметим, что фронт волны образуют точки, в которых фазы колебаний одинаковы. (Вспомним также, что фазой называется аргумент гармонической функции.) Обычно рисуют линии пересечения плоскости рисунка фронтами, на которых достигается максимум амплитуды колебаний. В таком случае говорят о гребнях волн.

 

Вдоль прямой расстояние между двумя точками минимально. Оказывается, что и в других случаях, когда, например, имеется отражающая поверхность, путь распространения света оказывается таким, что вдоль него время движения волны минимально. Это утверждение называют принципом Ферма - в простейшей, можно сказать, первоначальной формулировке. Эту формулировку нам еще предстоит в дальнейшем уточнять.

 

 

 

 

 

 

 

§3 Динамика электрона в кристаллической решетке. Эффективная масса электрона.

Отношение неопределенностей

Электрон перемещается в кристаллической решетке, электрон квантовая частица => характ. Волна.

Если решетка идеальная, электрон перемещается беспрепятственно, однако такого не бывает:

∆x∆Px>= ħ

Px = ħk

k = 2Pi/ ħ – волновой вектор

ħ ∆x ∆k >= ħ ∆x ∆k >= 1 ∆x >= 1/∆k 

если у электрона определена область локализации – движение характеризует волновой пакет.

Рис* вероятность в А мак больше

Vгр = dω/dk

E = ħω ω = E/ħ

Vгр = 1 dE/ħ dk

Эл. Поле (E напряженность)

F = eE (вект)

dA = FVгрdt - эта работа идет на увеличение E кин:

dA=dE

FVгрdt = dE dk/dk

F (1/ħ) (dE /dk) dt = (dE /dk) dk

dk/dt = F/ ħ

найдем ускорение:

a = 1/ ħ (d2E /dk2) (dk/dt)

a = (F/ ħ2) (d2E /dk2)

a=F/m =>

mэф = ħ2/(d2E /dk2) = m* - учитывает действие поля решетки на электрон (масса электрона в кристалле)

II З. Ньютона

F = eE + eEкр – без эфф. массы