Атомная физика | Физические законы механики | Термодинамика | Электричество | Магнетизм | Оптика | Молекулярная физика | Физмат.ру
Математика 1 семестр | Математика 2 семестр | Математика 3 семестр | Математика 4 семестр | Интегралы | 1 курс

Основы специальной теории относительности Теория относительности

 

ПРОБЛЕМА ПРАВИЛЬНОЙ ФИЗИЧЕСКОЙ ИНТЕРПРЕТАЦИИ ПРЕОБРАЗОВНИЙ ЛОРЕНЦА.

 Ур-ия Максвелла составлены для четырёх векторных ф-ий: E(x,y,z,t), D(x,y,z,t) - напряжённости и индукции электрического поля, H(x,y,z,t), B(x,y,z,t) - напряжённости и индукции магнитного поля.Эти ф-ии характеризуют возмущение неподвижного электромагнитного эфира.Изменяющиеся со временем электрическое и магнитное поля не могут существовать по

отдельности - они образуют единое электромагнитное поле,представляющее собой электромагнитные,в частности оптические волны.

Уравнения Максвелла имеют следующий вид:

 

rot E = -дB / дt , rot H = j + дD / дt , div D = р , div B = 0,

где j=j(x,y,z,t) - объёмная плотность элекрического заряда.

  Как видим,уравнения Максвелла предполагают,что координаты x,y,z и время t описываются в некоторой системе отсчёта,которая,по предположению Максвелла является системой отсчёта, в которой невозмущённый электромагнитый эфир покоится.

  Попытками распространить уравнения Максвелла на произвольно движущиеся материальные прозрачнные среды,которые как предполагалось в соответствии с гипотезой Френеля

каким-то образом увлекали с собой эфир,занимались многие крупные физики последней четверти XIX в.,но,пожалуй,больше всех Г.А. Лоренц.

 Исследуя выведенные им на основе его электронной теории уравнения Максвелла для движущейся среды,Лоренц в 1895 г. пришёл к удивительному результату,-что с точностью до членов первого порядка малости по v/c,где v-скорость движения системы отсчёта,c-скорость движения электромагнитных волн,эти уравнения Максвелла можно строго математически

преобразовать к виду уравнений Максвелла для неподвижной среды,т.е. он строго доказал,что уравнения Максвелла “не чувствуют” поступательного движения системы отсчёта,если только она движется с постоянной скоростью.

Центр инерции системы

335.gif

 

 В рассматриваемом выше уравнении Ньютона предполагалось, что тело имеет настолько малые размеры, что его можно считать материальной точкой. Движение любого недеформируемого тела конечных размеров может быть описано уравнениями, аналогичными (3.6), если ввести понятие «центра масс» («центра инерции») тела.

  Если тело состоит из n материальных точек с массами 1111.gifи радиус-векторами 1112.gif, то центром масс системы материальных точек называют такую т. С, радиус-вектор которой определяется следующим образом:

1113.gif

(3.7)

где 1111.gifи 1114.gif- масса и радиус-вектор i-ой точки системы, m - общая масса всей системы.

 Соответственно соотношения между декартовыми координатами центра инерции и всех точек системы имеют вид:

1115.gif

 Скорость центра инерции:

1116.gif

(3.8)

 Импульс системы.

 Геометрическую сумму импульсов всех материальных точек системы называют импульсом системы и обозначают буквой :

,

тогда скорость центра масс

(3.9)

 Таким образом, из (3.9) следует, что импульс системы равен произведению массы всей системы на скорость ее центра инерции:

(3.10)

 

Предмет механики. Механикой называют раздел физики, посвященный изучению закономерностей простейшей формы движения материи - механического движения. Механика состоит из трех подразделов: кинематики, динамики и статики. Кинематика изучает движение тел без учета причин, его вызывающих. Она оперирует такими величинами как перемещение, пройденный путь, время, скорость движения и ускорение.