Атомная физика | Физические законы механики | Термодинамика | Электричество | Магнетизм | Оптика | Молекулярная физика | Физмат.ру
Математика 1 семестр | Математика 2 семестр | Математика 3 семестр | Математика 4 семестр | Интегралы | 1 курс

Физика билеты к экзамену Билеты к экзамену

Кинематическая энергия тела во вращательном движении. Момент инерции тела. Теорема Штейнера. Энергия катящегося тела.

Моментом инерции тела относительно оси вращения наз. физическая величина, равная сумме произведений масс n-материальных точек системы на квадраты их расстояний до рассматриваемой оси. В случае непрерывного распределения масс эта сумма сводится к интегралу, где r - есть функция положения точки с координатами x,y,z.

Теорема Штейнера момент инерции тела I относительно любой оси вращения равен моменту его инерции  Ic относительно параллельной оси, проходящей через центр масс С тела, сложенного с произведением массы m тела на квадрат расстояния а между осями  

Кинетическая энергия вращения  разобьём тело на маленькие объёмы с элементарными массами m находящиеся на расстоянии r  от оси вращения. При подвижной оси эти объёмы опишут окружности различных радиусов r и имеют различные скорости V, но угловая скорость этих объёмов одинакова

. Кинетическую энергию вращающегося тела найдем как сумму кинетических энергий его элементарных объёмов

В случае плоского движения тела скатывающегося с наклонной плоскости, без скольжения, энергия движения складывается из энергии поступательного движения и энергии вращения.

 В поперечной волне частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны. Механические поперечные волны могут возникнуть лишь в среде, обладающей сопротивлением сдвигу. Поэтому в жидкой и газообразной средах возможно возникновение только продольных волн. В твердой среде возможно возникновение как продольных, так и поперечных волн. В продольных волнах вследствие совпадения направлений колебаний частиц и волны появляются сгущения и разрежения.