Атомная физика | Физические законы механики | Термодинамика | Электричество | Магнетизм | Оптика | Молекулярная физика | Физмат.ру
Математика 1 семестр | Математика 2 семестр | Математика 3 семестр | Математика 4 семестр | Интегралы | 1 курс

Лекции по физике Прикладная математика и физика Основы физики

 

С помощью этой формулы Планка мы можем получить все ответы на вопросы, связанные с твёрдым телом.

1. Классическая теория теплоёмкости. Модель независимых осцилляторов

Твёрдое тело может быть смоделировано частицами, которые колеблются относительно положения равновесия. Частицы в узлах решётки сидят и при нагревании колеблются, поэтому простейшая модель такая: частица массы m привязана пружинкой жёсткости k к положению равновесия. На самом деле, там пусто и привязаться не к чему, мы делаем модель. Каждый атом с положением равновесия в узлах решётки мы моделируем независимым осциллятором. Энергия осциллятора . Можно доказать, что средняя кинетическая энергия осциллятора равна средней потенциальной энергии: . Из статистической физики известно, что , поэтому средняя энергия одного осциллятора равна . Тогда внутренняя энергия одного моля будет равняться , а теплоёмкость

 

Классическая теория говорит, что теплоёмкость одного моля любого твёрдого тела равна 3R. На самом деле, теплопроводность твёрдых тел экспериментально имеет такой вид (рис.1.2).

 

При достаточно низких температурах теплоёмкость падает как T3. Классическая теория не справляется с этим делом.

Энергия осциллятора квантуется. ,  где – частота осциллятора. Если учесть квантование энергии, то средняя энергия, приходящаяся на одну степень свободы равна , а для пространственного осциллятора

 

Как это согласуется с классическим результатом? Очень просто – при   и  при . Это уже даёт правильное приближение, но закон T3 не получается всё равно. Это говорит о том, что модель независимых осцилляторов слишком груба.

Закон Паскаля: если к некоторой части поверхности, ограничивающей газ или жидкость, приложено давление , то оно одинаково передается любой части этой поверхности. 

Основное уравнение МКТ: 

,

где средняя энергия одной молекулы; п – концентрация молекул.

Абсолютная температура – это мера кинетической энергии теплового движения частиц идеального газа:

.

Сравнение температурных шкал:

images 1

Объем газа в трубке газового термометра:

.

Элементы термодинамики Обратимые и необратимые процессы. Круговой процесс. Цикл Карно и его КПД для идеального газа. Принцип работы холодильных установок. Теп-ловые насосы и кондиционеры. Описание реальных систем. Реальные газы. Пределы применимо-сти законов идеального газа. Силы и потенциальная энергия межмолеку-лярного взаимодействия. Уравнение Ван-дер-Ваальса. Опытные законы диффузии