Инженерная графика
Физика
Атомные станции
Строймех
ТКМ
Начертательная геометрия
Экология энергетики
Сопромат
Готика
Черчение
Теплотехника
Математика

Театр

Конспект лекций
Атомная энергетика
Карта

Физика твердого тела Кристалы Свойства начало

Тепловые свойства кристаллов

     Кристалл представляет собой систему упорядоченно расположенных атомов, обладающих определенными массами; между атомами действуют силы притяжения и отталкивания, уравновешивающие друг друга при определенных равновесных расстояниях между атомами. При отклонении атома из положения равновесия возникает возвращающая сила, противоположная смещению, величина которой зависит от типа атома, его окружения и направления смещения в кристалле. Согласно классической теории колебаний, в такой системе "упруго-связанных масс", состоящей из атомов, имеют место нормальные колебания с собственными частотами , где ; причем колебания с частотами , являются независимыми друг от друга; движение атомов может быть представлено как суперпозиция этих нормальных колебаний.
     Именно как набор независимых осцилляторов с индивидуальными собственными частотами и рассматривается кристалл как в классической, так и в квантовой теории тепловых свойств кристаллов и молекул [1-3].
     Согласно классической теории, при температуре в среднем каждый осциллятор будет обладать энергией ; всего осцилляторов , следовательно кристалл будет обладать энергией . Молярная теплоемкость кристалла окажется равной: . Это - известный закон Дюлонга и Пти, утверждающий что молярная теплоемкость любых кристаллических веществ одна и та же и равна . Он сравнительно хорошо выполняется только при сравнительно высоких температурах порядка 700-2000 К. При более низких температурах он не выполняется даже приближенно.
     Значительно более точное описание тепловых свойств кристалла дает квантовая теория теплоемкости кристаллов, разработанная Эйнштейном и Дебаем. В ее основе лежит предположение о квантовании энергии колебаний, подобно тому как квантовалась энергия электромагнитных колебаний в квантовой теории теплового излучения (том 5).
     Согласно квантовой теории, энергия каждого нормального колебания квантуется по тем же законам, как и энергия одиночного осциллятора (см. том 5). Энергию считают квантом (порцией) энергии колебаний осциллятора, сам же квант принято называть фононом и рассматривать его как частицу, обладающую, в частности, такими свойствами частицы, как энергия и импульс . Взаимная независимость нормальных колебаний позволяет использовать для их описания теорию Бозе-газа, в которой в качестве частиц-Бозонов рассматривают фононы. В следующих разделах будет показано, что квантовая теория колебаний кристалла позволяет правильно объяснять многие наблюдаемые на опыте закономерности, в частности, зависимость теплоемкости и теплопроводности от температуры. Эта теория, называемая еще фононной теорией, позволяет объяснять и многие другие явления, связанные с рассеянием излучений и частиц веществом, передачей энергии и заряда. Для многих задач важно знать характеристики фононов, которые можно экпериментально исследовать различными методами.