Вычисление площадей в декартовых координатах начало

 

Пример 2.Вычислить площадь фигуры, ограниченной параболами х = –2у2, х=1–3у2 

Решение. Решая систему уравнений

,

найдем ординаты точек пересечения кривых . Так как

при , то

.

ПРИМЕР 4. Вычислить .

РЕШЕНИЕ. Приводим интеграл  к виду интеграла : . Выделим полный квадрат в трехчлене знаменателя . Полагая , получим  и

.

4. При интегрировании интеграла вида

 – произвольные
числа, целесообразна так называемая "обратная подстановка" ; она приводит интеграл  к интегралу "более простого
вида" – без множителя перед корнем в знаменателе. Покажем это на конкретном примере.

ПРИМЕР 5. Вычислить .

РЕШЕНИЕ. При , ,  имеем

.

Получим интеграл вида ; для его вычисления преобразуем
трехчлен

.

Окончательно

.

Далее указаны примеры других подстановок, упрощающих
исходные интегралы.

 

Для вычисления производных сложной функции в общем случае нужно: 1) сложную функцию дифференцировать по независимым переменным; 2) установить число независимых переменных (что соответствует количеству возможных частных производных первого порядка сложной функции); 3) определить число промежуточных переменных (т.е. количество слагаемых в формуле для значения каждой частной производной сложной функции). Производная сложной ФНП по независимому переменному равна сумме произведений производной внешней функции по каждому из промежуточных переменных, умноженной на производную этого промежуточного переменного по соответствующему независимому аргументу.