Вычисление площадей фигур при параметрическом задании границы начало

  Пример 4. Вычислить площадь фигуры, ограниченной кривой .

 Подпись:                       Рис. 2.1.
                      Рис. 2.1
          

   Р е ш е н и е. Для построения кривой учтем, что она симметрична относительно осей координат. Действительно, если заменить  на  то переменная  не меняется, а  изменяет только свой знак; следовательно, кривая симметрична  относительно оси . При замене же  на  переменная  не меняется, а  изменяет только свой знак. Это значит, что кривая сим­метрична  относительно оси . Далее, так как функ­ции  имеют общий период , то достаточно ограничится следующим отрезком изменения параметра: . Из уравнений кривой  легко заключить, что переменные   и  одновременно сохраняют неотрицательные  значения только при изме­нении параметра  на отрезке  поэтому при  получается часть кривой, лежащая в первой четверти. Общий  вид кривой изображен на рис.2.1. Как видно из этого рисунка, достаточно вычислить  площадь одной петли кривой, соответствующей изменению параметра  от  до , и затем удвоить результат

ПРИМЕР 4. Вычислить .

РЕШЕНИЕ. Умножим числитель дроби подынтегрального выражения на  с тем, чтобы попытаться "погасить избыток"
четных степеней   в знаменателе. Получаем

.

В каждом из полученных интегралов проведем процедуру "погашения избытка" четных степеней в знаменателе еще раз; тогда получим

.

Здесь два раза последовательно умножали числители интегралов на "тригонометрическую единицу". Можно сразу "погасить избыток" степеней в знаменателе () умножением числителя на ; можно провести замену переменной .

. Преобразование подынтегрального выражения с помощью "тригонометрической единицы" целесообразно применять и в случае, когда показатели  и  одновременно отрицательные нечетные числа.

Для вычисления производных сложной функции в общем случае нужно: 1) сложную функцию дифференцировать по независимым переменным; 2) установить число независимых переменных (что соответствует количеству возможных частных производных первого порядка сложной функции); 3) определить число промежуточных переменных (т.е. количество слагаемых в формуле для значения каждой частной производной сложной функции). Производная сложной ФНП по независимому переменному равна сумме произведений производной внешней функции по каждому из промежуточных переменных, умноженной на производную этого промежуточного переменного по соответствующему независимому аргументу.