Атомная физика | Физические законы механики | Термодинамика | Электричество | Магнетизм | Оптика | Молекулярная физика |

Вычисление обьема тела начало

  Пример 5. Фигура, ограниченная дугой синусоиды , осью ординат и прямой , вращается вокруг оси Оу (рис.4.5). 

  Определить объем V получающегося тела вращения.

 Р е ш е н и е. Обратная функция  рассматривается на отрезке [0, 1]. Поэтому

.

Задача 7. Дана функция комплексной переменной , где z = x + iy, и точка z0 = – 1 + 3i. Требуется: представить функцию в виде w = u(x, y) +iv(x, y), выделив ее действительную и мнимую части; проверить, является ли функция w аналитической;

 Применим подстановку  . Отсюда

0

1

0

 ,

 ,

Значит, .

Подпись:  

          
             Рис.4.5

 

 

 

 

Интегрируя по частям , получим .

ПРИМЕР. Исследовать на локальный экстремум

.

Решение. Применяя необходимые условия (сокращенно НУ), находим точки, "подозрительные" на экстремум:

НУ:   и .

Для применения достаточных условий (сокращенно ДУ) составляем  и рассматриваем его определенность в каждой
"подозрительной" на экстремум точке; имеем

 –

квадратичную форму относительно  и .

ДУ: ; матрица коэффициентов этой квадратичной формы имеет вид ; для нее , . Критерий Сильвестра не выполняется. Нужны дополнительные
исследования, их можно провести, например, следующим образом.

Пусть  – произвольная -окрестность () точки . Поскольку , то найдутся точки, принадлежащие этой окрестности, в которых  имеет значения различных знаков, например, в точке  , а в точке  имеем .

Итак, во всякой -окрестности точки  приращение функции не сохраняет знак. Это означает, что точка  не является точкой экстремума для рассматриваемой функции.

В точке  матрица коэффициентов квадратичной формы  имеет вид , для нее , . Согласно критерию Сильвестра  – положительно определенная квадратичная форма; по ДУ в точке  функция имеет локальный (безусловный) минимум, причем .

 

 

 

АБСОЛЮТНЫЙ ЭКСТРЕМУМ ФНП

ПРИМЕР. ,

   (см. рисунок).

Решение. 1) , . Точка  
лежит внутри области .

2) на отрезке  , , имеем ,  при . Точку  фиксируем для дальнейших рассуждений

На отрезке  , , имеем

  или ;  при , поэтому точку  также отбираем.

На отрезке  , , имеем  – не имеет точек экстремума на ;

3) точки "стыка" , ,  границы ;

4) вычисляем значение функции в отобранных точках , , получаем конечное множество чисел

.

Отсюда , .

 

Для вычисления производных сложной функции в общем случае нужно: 1) сложную функцию дифференцировать по независимым переменным; 2) установить число независимых переменных (что соответствует количеству возможных частных производных первого порядка сложной функции); 3) определить число промежуточных переменных (т.е. количество слагаемых в формуле для значения каждой частной производной сложной функции). Производная сложной ФНП по независимому переменному равна сумме произведений производной внешней функции по каждому из промежуточных переменных, умноженной на производную этого промежуточного переменного по соответствующему независимому аргументу.