Строймех | |||
Сопромат | |||
Математика | |||
Карта |
Уравнение прямой по точке и направляющему вектору.
По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание прямой через точку и направляющий вектор прямой.
Определение. Каждый ненулевой вектор
(a1, a2), компоненты которого удовлетворяют условию Аa1 + Вa2 = 0 называется направляющим вектором прямой Ах + Ву + С = 0. Пример. Найти уравнение прямой с направляющим вектором
(1, -1) и проходящей через точку А(1, 2). Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением, коэффициенты должны удовлетворять условиям: 1×A + (-1)×B = 0, т.е. А = В. Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C/A = 0. при х = 1, у = 2 получаем С/A = -3, т.е. искомое уравнение: х + у - 3 = 0 Уравнение прямой в отрезках. Если в общем уравнении прямой Ах + Ву + С = 0 С ¹ 0, то, разделив на –С, получим:
или
, где
Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.
Пример. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках. С = 1,
, а = -1, b = 1.
Возрастание, убывание и экстремум функции. Наибольшее и наименьшее хначение функции на отрезке. Выпуклость, вогнутость графика. Точки перегиба.
Функция y=f(x) называется возрастающей (убывающей) в некотором интервале, если при x1< x2 выполняется неравенство f(x1) < f (x2) (f(x1) > f(x2)).
Если дифференцируемая функция y = f(x) на отрезке [a, b] возрастает (убывает), то ее производная на этом отрезке f ¢(x) > 0 (f ¢(x) < 0).
Точка xо называется точкой локального максимума (минимума) функции f(x), если существует окрестность точки xо, для всех точек которой верно неравенство f(x) £ f(xо) (f(x) ³ f(xо)).
Точки максимума и минимума называются точками экстремума, а значения функции в этих точках - ее экстремумами.
Необходимые условия экстремума. Если точка xо является точкой экстремума функции f(x), то либо f ¢(xо) = 0, либо f ¢(xо) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.
Первое достаточное условие. Пусть xо - критическая точка. Если f ¢ (x) при переходе через точку xо меняет знак плюс на минус, то в точке xо функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке xо экстремума нет.
Второе достаточное условие. Пусть функция f(x) имеет производную
f ¢ (x) в окрестности точки xо и вторую производнуюв самой точке xо. Если f ¢(xо) = 0,
>0 (
<0), то точка xо является точкой локального минимума (максимума) функции f(x). Если же
=0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные.
На отрезке [a,b] функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка [a,b].
|