Строймех | |||
Сопромат | |||
Математика | |||
Карта |
Как и на плоскости, в пространстве положение любой точки может быть определено тремя координатами в различных системах координат, отличных от декартовой прямоугольной системы. Цилиндрическая и сферическая системы координат являются обобщением для пространства полярной системы координат, которая была подробно рассмотрена выше.
Введем в пространстве точку О и луч l, выходящий из точки О, а также вектор . Через точку О можно
провести единственную плоскость, перпендикулярную вектору нормали
.
Для введения соответствия между цилиндрической, сферической и декартовой прямоугольной системами координат точку О совмещяют с началом декартовой прямоугольной системы координат, луч l – с положительным направлением оси х, вектор нормали – с осью z.
Цилиндрическая и сферическая системы координат используются в тех случаях, когда уравнение кривой или поверхности в декартовой прямоугольной системе координат выглядят достаточно сложно, и операции с таким уравнением представляются трудоемкими.
Представление уравнений в цилиндрической и сферической системе позволяет значительно упростить вычисления, что будет показано.
z
ОМ1 = r; MM1 = h;
Если из точки М опустить перпендикуляр ММ1 на плоскость, то точка М1 будет иметь на плоскости полярные координаты (r, q).
Определение. Цилиндрическими координатами точки М называются числа (r, q, h), которые определяют положение точки М в пространстве.
Определение. Сферическими координатами точки М называются числа (r,j,q), где j - угол между r и нормалью.
Связь цилиндрической и декартовой прямоугольной системами координат.
Аналогично полярной системе координат на плоскости можно записать соотношения, связывающие между собой различные системы координат в пространстве. Для цилиндрической и декартовой прямоугольной систем эти соотношения имеют вид:
h = z; x = rcosq; y = rsinq; cosq = ; sinq =
.
Связь сферической системы координат с декартовой прямоугольной.
В случае сферической системы координат соотношения имеют вид:
Метод Гаусса
Исторически первым, наиболее распространенным методом решения систем линейных уравнений является метод Гаусса, или метод последовательного исключения неизвестных. Сущность этого метода состоит в том, что посредством последовательных исключений неизвестных данная система превращается в ступенчатую (в частности, треугольную) систему, равносильную данной. При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности.
Пример 1.13. Решить систему уравнений методом Гаусса:
x + y - 3z = 2,
3x - 2y + z = - 1,
2x + y - 2z = 0.
Решение. Выпишем расширенную матрицу данной системы
и произведем следующие элементарные преобразования над ее строками:
а) из ее второй и третьей строк вычтем первую, умноженную соответственно на 3 и 2:
~
;
б) третью строку умножим на (-5) и прибавим к ней вторую:
.
В результате всех этих преобразований данная система приводится к треугольному виду:
x + y - 3z = 2,
-5y + 10z = -7,
- 10z = 13.
Из последнего
уравнения находим z = -1,3. Подставляя это значение во второе уравнение, имеем
y = -1,2. Далее из первого уравнения получим
x = - 0,7.
В аналитической геометрии линия на плоскости определяется как множество точек, координаты которых удовлетворяют уравнению F(x,y)=0. При этом на функцию F должны быть наложены ограничения так, чтобы, с одной стороны, это уравнение имело бесконечное множество решений и, с другой стороны, чтобы это множество решений не заполняло “куска плоскости”. Важный класс линий составляют те, для которых функция F(x,y) есть многочлен от двух переменных, в этом случае линия, определяемая уравнением F(x,y)=0, называется алгебраической. Алгебраические линии, задаваемые уравнением первой степени, cуть прямые. Уравнение второй степени, имеющее бесконечное множество решений, определяет эллипс, гиперболу, параболу или линию, распадающуюся на две прямые.
|