Математика решение задач Векторная алгебра
Математика 1 семестр | Математика 2 семестр | Математика 3 семестр | Математика 4 семестр | Интегралы | 1 курс Лёгкое доминирование в непривычных условиях - это шлягер зимы от рыжеволосых потаскухКемерово http://kemerovo.prostitutki.beer/services-for-sex/lyogkoe-dominirovanie/,позвоните нам и купите себе чаровницу, которая осуществит для вас всё, что вы захотите.|Фотосъёмка - одна из услуг, которые представляют мокрые путаныИжевска http://izhevsk.prostitutki.beer/services-for-sex/fotosyomka/,испробуйте всяческие услуги и решите которая балдежней, ну и конечно же присоветуйте корешам.|Есть молодой человек для семейной пары - это наиболее распостраненная услуга, которую берут у сучекАбакана http://abakan.prostitutki.beer/services-for-sex/est-molodoj-chelovek-dlya-semejnoj-pary/,наверняка заставит прийти к согласию даже самого прихотливого абонента, как здорово можно проводить время периодически с близкими братанами в джакузи.

Курс высшей математики Оглавление

Дискретная математика.

Элементы комбинаторики.

 

 Если из некоторого количества элементов, различных меду собой, составлять различные комбинации, то среди них можно выделить три типа комбинаций, носящих общее название – соединения.

 Рассмотрим подробнее эти три типа соединений:

 1) Перестановки.

Определение. Если в некотором множестве  переставлять местами элементы, оставляя неизменным их количество, то каждая полученная таким образом комбинация называется перестановкой.

 Общее число перестановок из m элементов обозначается Pm и вычисляется по формуле:

 2) Размещения.

 Определение. Если составлять из т различных элементов группы по n элементов в каждой, располагая взятые элементы в различном порядке. Получившиеся при этом комбинации называются размещениями из т элементов по п.

 

 Общее число таких размещений расчитывается по формуле:

 

 Вообще говоря, перестановки являются частным случаем размещений.

 3) Сочетания.

 Определение. Если из т элементов составлять группы по п элементов в каждой, не обращая внимания на порядок элементов в группе, то получившиеся при этом комбинации называются сочетаниями из т элементов по п.

 

 Общее число сочетаний находится по формуле:

 

 

 Также одним из вариантов комбинаций являются перестановки с повторяющимися элементами. Подушки оптом

 Если среди т элементов имеется т1 одинаковых элементов одного типа, т2 одинаковых элементов другого типа и т.д., то при перестановке этих элементов всевозможными способами получаем комбинации, количество которых определяется по формуле:

 Пример. Номер автомобиля состоит из трех букв и трех цифр. Сколько различных номеров можно составить, используя 10 цифр и алфавит в 30 букв.

 

 Очевидно, что количество всех возможных комбинаций из 10 цифр по 4 равно 10.000.

 Число всех возможных комбинаций из 30 букв по две равно .

Если учесть возможность того, что буквы могут повторяться, то число повторяющихся комбинаций равно 30 (одна возможность повтора для каждой буквы). Итого, полное количество комбинаций по две буквы равно 900.

 Если к номеру добавляется еще одна буква из алфавита в 30 букв, то количество комбинаций увеличивается в 30 раз, т.е. достигает 27.000 комбинаций.

 Окончательно, т.к. каждой буквенной комбинации можно поставить в соответствие числовую комбинацию, то полное количество автомобильных номеров равно 270.000.000

Пример 4.2. Найти предел последовательности, заданной общим членом xn = .

Решение. Применим теорему о пределе суммы и найдем предел каждого слагаемого. При n ®¥ числитель и знаменатель каждого слагаемого стремится к бесконечности, и мы не можем непосредственно применить теорему о пределе частного. Поэтому сначала преобразуем xn, разделив числитель и знаменатель первого слагаемого на n2, а второго на n. Затем, применяя теорему о пределе частного и о пределе суммы, найдем:

xn = .

Пример 4.3. xn = . Найти  xn.

Решение. =.

Здесь мы воспользовались теоремой о пределе степени: предел степени равен степени от предела основания.

Пример 4.4. Найти  ().

Решение. Применять теорему о пределе разности нельзя, поскольку имеем неопределенность вида ¥ - ¥. Преобразуем формулу общего члена:

  = .

Пример 4.5. Дана функция f(x)=21/x. Доказать, что  не существует.

Решение. Воспользуемся определением 1 предела функции через последовательность. Возьмем последовательность { xn }, сходящуюся к 0, т.е.  xn =0. Покажем, что величина f(xn)= для разных последовательностей ведет себя по-разному. Пусть xn = 1/n. Очевидно, что 1/n =0, тогда   =  2n = +¥. Выберем теперь в качестве xn последовательность с общим членом xn = -1/n, также стремящуюся к нулю.   =  2- n=  1/2n = 0. Поэтому 2 1/x не существует.

Пример 4.6. Доказать, что  sin x не существует.

Решение. Пусть x1, x2,..., xn,... - последовательность, для которой
xn = ¥. Как ведет себя последовательность {f(xn)} = {sin xn } при различных xn ®¥ ?

Если xn= pn, то sin xn= sin pn = 0 при всех n и sin xn =0. Если же
xn=2pn+p/2, то sin xn= sin(2pn+p/2) = sin p/2 = 1 для всех n и следовательно  sin xn =1. Таким образом,  sin x не существует.

 

В аналитической геометрии линия на плоскости определяется как множество точек, координаты которых удовлетворяют уравнению F(x,y)=0. При этом на функцию F должны быть наложены ограничения так, чтобы, с одной стороны, это уравнение имело бесконечное множество решений и, с другой стороны, чтобы это множество решений не заполняло “куска плоскости”. Важный класс линий составляют те, для которых функция F(x,y) есть многочлен от двух переменных, в этом случае линия, определяемая уравнением F(x,y)=0, называется алгебраической. Алгебраические линии, задаваемые уравнением первой степени, cуть прямые. Уравнение второй степени, имеющее бесконечное множество решений, определяет эллипс, гиперболу, параболу или линию, распадающуюся на две прямые.