Интегральное исчисление - курс лекций

Строймех
Сопромат
Математика

Театр

Карта

Курс лекций - первый семестр

Алгебра матриц

В этой главе, прежде всего, строится матричное исчисление. На множестве матриц, определяемых как таблицы вещественных чисел, вводятся операции (сложения, умножения, умножения на число, транспонирования и обращения) и изучаются свойства этих операций. Выясняется, что наряду со свойствами операций, наследуемыми матрицами у вещественных чисел, у них появляются и новые свойства, которыми вещественные числа не обладают. Например, умножение матриц оказывается некоммутативным.

После этого обсуждается проблема разложения матрицы на простейшие. Оказывается, что любую матрицу единственным образом можно представить в виде суммы матриц, каждая из которых обладает только одним ненулевым элементом. Представление матрицы в виде произведения простейших является более сложным и нуждается в построении специального аппарата элементарных матриц, оправдывающего себя в последующих разделах курса.

В последней части первой главы изучаются простейшие матричные уравнения.

Лекция I.

Матрицы. Терминология

Прямоугольная таблица действительных чисел

называется действительной матрицей. Числа , образующие матрицу, называются её элементами. Здесь . Для обозначения матриц будем применять заглавные буквы латинского алфавита A, B, C, ..., X, Y, Z, а для обозначения их элементов – греческие буквы  и т.д. с индексами  и . При этом первый слева индекс (индекс ) указывает номер строки, а второй индекс (индекс ) – на номер столбца матрицы, на пересечении которых расположен элемент . Наряду с обозначением (1.1) в литературе часто встречаются сокращенные обозначения

или просто . Эти обозначения мы также будем использовать в дальнейшем.

Введем специальные обозначения для строк и столбцов матрицы :

а множество всех действительных матриц с строками и столбцами будем обозначать через . Если , матрица называется прямоугольной матрицей порядка , а если  - квадратной матрицей порядка . Множество всех действительных квадратных матриц порядка обозначается . Матрица , имеющая только одну строку,

,

называется матрицей-строкой порядка .

Матрица , имеющая только один столбец,

,

называется матрицей-столбцом порядка . Матрицы-строки и матрицы-столбцы называются также арифметическими векторами. Множество всех арифметических векторов (матриц-столбцов) порядка  в дальнейшем будем обозначать через .

Элементы  матрицы  образуют её главную диагональ. Если все элементы матрицы , не стоящие на её главной диагонали, равны нулю,

,

матрица  называется диагональной. Квадратная матрица , у которой все элементы, стоящие выше (ниже) главной диагонали, равны нулю,

называется нижне-треугольной (верхне-треугольной) матрицей.

Понятие матрицы является одним из основных понятий курса алгебры. Элементами числовых матриц (целочисленных, рациональных, действительных, комплексных, булевых) являются числа (целые, рациональные, действительные, комплексные, булевы числа 0 и 1). В этом курсе мы будем иметь дело прежде всего с действительными матрицами. Тем не менее, обозначения  и т.д. имеют очевидный смысл. Наряду с числовыми матрицами в этом и других математических курсах встречаются более сложные типы матриц: полиномиальные, функциональные, блочные и т.д., то есть матрицы, элементами которых являются соответственно полиномы (многочлены), функции, блоки (матрицы одинакового порядка) и т.д. В связи с этим отметим, что все положения и свойства матриц, рассматриваемые в данном разделе, с надлежащими уточнениями справедливы и для других указанных выше типов матриц, характер же этих уточнений мы будем обсуждать всякий раз в соответствующем месте.

Курс лекций - второй семестр

Дифференциальное исчисление функции одной переменной

Пример: Применить полученную формулу для нахождения синуса любого угла с любой степенью точности.
Пример: Вычислить sin28013¢15¢¢.
Теоремы о среднем
Раскрытие неопределенностей
Пример: Найти предел .

Векторная функция скалярного аргумента

Свойства производной векторной функции скалярного аргумента

Параметрическое задание функции

Уравнения некоторых типов кривых в параметрической форме

Производная функции, заданной параметрически

Кривизна плоской кривой

Свойства эволюты

Кривизна пространственной кривой

О формулах Френе

  • Пример: Методами дифференциального исчисления исследовать функцию  и построить ее
  • Пример: Исследовать функцию  и построить ее график.график.
  • Пример: Исследовать функцию  и построить ее график.

Интегральное исчисление.

Первообразная функция

Пример

Методы интегрирования

Интегрирование элементарных дробей

Примеры

Интегрирование рациональных функций

 Пример.   

Интегрирование некоторых тригонометрических функций

Интеграл произведения синусов и косинусов

Интегрирование некоторых иррациональных функций

Интегрирование биноминальных дифференциалов

Определенный интеграл

Свойства

Вычисление определенного интеграла

Замена переменных

Интегрирование по частям

Геометрические приложения определенного интеграла

Вычисление объемов тел.

Функции нескольких переменных

Производные и дифференциалы функций нескольких переменных

  Пример. Найти полный дифференциал функции .

Геометрический смысл полного дифференциала. Касательная плоскость и нормаль к поверхности.

Приближенные вычисления с помощью полного дифференциала

Частные производные высших порядков

Экстремум функции нескольких переменных

Условный экстремум

Производная по направлению

 Пример. Вычислить производную функции z = x2 + y2x в точке А(1, 2) по направлению вектора . В (3, 0).

Градиент

Кратные интегралы

Условия существования двойного интеграла

Вычисление двойного интеграла

  Пример. Вычислить интеграл , если область интегрирования D ограничена линиями х = 0, х = у2, у = 2.

Тройной интеграл

Цилиндрическая система координат

Геометрические и физические приложения кратных интегралов

Вычисление площади кривой поверхности

Вычисление площадей в полярных координатах

 

Курс лекций - третий семестр

Курс лекций - четвертый семестр

 

 

Ломтерезка для жилованного и не жилованного мяса здесь