Интегральное исчисление - курс лекций

Машиностроительное черчение
Единая система конструкторской
документации
Машиностроительные построения
Инженерная графика
Сборочный чертеж
Начертательная геометрия
Геометрические основы
построения чертежа
Конспект лекций по начертательной
геометрии
История искусства
Стили в искусстве Готика
Русский балетный театр
Русское изобразительное искусство
ТКМ
Материаловедение
Основы теории сплавов
Теория конструктивных материалов
Сопромат
Сопративление метериалов
Лабораторные работы
Задачи строительной механики
Лекции физика
Физика
Электричество
Магнетизм
Оптика
Электромагнетизм
Молекулярная физика
Лекции МАИ
Лекции МАИ часть 2
Диэлектрики
Квантовая механика
Физические законы механики
Электромагнитное взаимодействия
Атомные станции
Атомная энергетика
Экология энергетики
Атомная и ядерная физика
Теплотехника
Термодинамика
Билеты к экзамену по физике
Задачи физика электротехника
Решение задач по ядерной физике
Электростатика
Геометрическая оптика
Тепловое излучение
Основы теории сплавов
Теория относительности
Физические основы механики
Законы идеальных газов
Электростатика
Основы электротехники
Постоянный ток
Электромагнетизм
Оптика
Законы теплового излучения
Ядерная физика
Строение атома и молекул
Задачи математика
Математика
1 семестр
2 семестр
3 семестр
4 семестр
Интегралы
Лекции по высшей математике
Вычисление площадей в
декартовых координатах
Аналитическая геометрия
 
Информатика
Восстановление сети после аварии
Основные понятия и категории
информатики
Сетевые операционные системы

Курс лекций - первый семестр

Алгебра матриц

В этой главе, прежде всего, строится матричное исчисление. На множестве матриц, определяемых как таблицы вещественных чисел, вводятся операции (сложения, умножения, умножения на число, транспонирования и обращения) и изучаются свойства этих операций. Выясняется, что наряду со свойствами операций, наследуемыми матрицами у вещественных чисел, у них появляются и новые свойства, которыми вещественные числа не обладают. Например, умножение матриц оказывается некоммутативным.

После этого обсуждается проблема разложения матрицы на простейшие. Оказывается, что любую матрицу единственным образом можно представить в виде суммы матриц, каждая из которых обладает только одним ненулевым элементом. Представление матрицы в виде произведения простейших является более сложным и нуждается в построении специального аппарата элементарных матриц, оправдывающего себя в последующих разделах курса.

В последней части первой главы изучаются простейшие матричные уравнения.

Лекция I.

Матрицы. Терминология

Прямоугольная таблица действительных чисел

называется действительной матрицей. Числа , образующие матрицу, называются её элементами. Здесь . Для обозначения матриц будем применять заглавные буквы латинского алфавита A, B, C, ..., X, Y, Z, а для обозначения их элементов – греческие буквы  и т.д. с индексами  и . При этом первый слева индекс (индекс ) указывает номер строки, а второй индекс (индекс ) – на номер столбца матрицы, на пересечении которых расположен элемент . Наряду с обозначением (1.1) в литературе часто встречаются сокращенные обозначения

или просто . Эти обозначения мы также будем использовать в дальнейшем.

Введем специальные обозначения для строк и столбцов матрицы :

а множество всех действительных матриц с строками и столбцами будем обозначать через . Если , матрица называется прямоугольной матрицей порядка , а если  - квадратной матрицей порядка . Множество всех действительных квадратных матриц порядка обозначается . Матрица , имеющая только одну строку,

,

называется матрицей-строкой порядка .

Матрица , имеющая только один столбец,

,

называется матрицей-столбцом порядка . Матрицы-строки и матрицы-столбцы называются также арифметическими векторами. Множество всех арифметических векторов (матриц-столбцов) порядка  в дальнейшем будем обозначать через .

Элементы  матрицы  образуют её главную диагональ. Если все элементы матрицы , не стоящие на её главной диагонали, равны нулю,

,

матрица  называется диагональной. Квадратная матрица , у которой все элементы, стоящие выше (ниже) главной диагонали, равны нулю,

называется нижне-треугольной (верхне-треугольной) матрицей.

Понятие матрицы является одним из основных понятий курса алгебры. Элементами числовых матриц (целочисленных, рациональных, действительных, комплексных, булевых) являются числа (целые, рациональные, действительные, комплексные, булевы числа 0 и 1). В этом курсе мы будем иметь дело прежде всего с действительными матрицами. Тем не менее, обозначения  и т.д. имеют очевидный смысл. Наряду с числовыми матрицами в этом и других математических курсах встречаются более сложные типы матриц: полиномиальные, функциональные, блочные и т.д., то есть матрицы, элементами которых являются соответственно полиномы (многочлены), функции, блоки (матрицы одинакового порядка) и т.д. В связи с этим отметим, что все положения и свойства матриц, рассматриваемые в данном разделе, с надлежащими уточнениями справедливы и для других указанных выше типов матриц, характер же этих уточнений мы будем обсуждать всякий раз в соответствующем месте.

Курс лекций - второй семестр

Дифференциальное исчисление функции одной переменной

Пример: Применить полученную формулу для нахождения синуса любого угла с любой степенью точности.
Пример: Вычислить sin28013¢15¢¢.
Теоремы о среднем
Раскрытие неопределенностей
Пример: Найти предел .

Векторная функция скалярного аргумента

Свойства производной векторной функции скалярного аргумента

Параметрическое задание функции

Уравнения некоторых типов кривых в параметрической форме

Производная функции, заданной параметрически

Кривизна плоской кривой

Свойства эволюты

Кривизна пространственной кривой

О формулах Френе

  • Пример: Методами дифференциального исчисления исследовать функцию  и построить ее
  • Пример: Исследовать функцию  и построить ее график.график.
  • Пример: Исследовать функцию  и построить ее график.

Интегральное исчисление.

Первообразная функция

Пример

Методы интегрирования

Интегрирование элементарных дробей

Примеры

Интегрирование рациональных функций

  Пример.   

Интегрирование некоторых тригонометрических функций

Интеграл произведения синусов и косинусов

Интегрирование некоторых иррациональных функций

Интегрирование биноминальных дифференциалов

Определенный интеграл

Свойства

Вычисление определенного интеграла

Замена переменных

Интегрирование по частям

Геометрические приложения определенного интеграла

Вычисление объемов тел.

Функции нескольких переменных

Производные и дифференциалы функций нескольких переменных

  Пример. Найти полный дифференциал функции .

Геометрический смысл полного дифференциала. Касательная плоскость и нормаль к поверхности.

Приближенные вычисления с помощью полного дифференциала

Частные производные высших порядков

Экстремум функции нескольких переменных

Условный экстремум

Производная по направлению

 Пример. Вычислить производную функции z = x2 + y2x в точке А(1, 2) по направлению вектора . В (3, 0).

Градиент

Кратные интегралы

Условия существования двойного интеграла

Вычисление двойного интеграла

  Пример. Вычислить интеграл , если область интегрирования D ограничена линиями х = 0, х = у2, у = 2.

Тройной интеграл

Цилиндрическая система координат

Геометрические и физические приложения кратных интегралов

Вычисление площади кривой поверхности

Вычисление площадей в полярных координатах

 

Курс лекций - третий семестр

Курс лекций - четвертый семестр