Интегральное исчисление курс лекций Интегральное исчисление   

 

Исследование функций с помощью производной. 

Возрастание и убывание функций.

 

 Теорема. 1) Если функция f(x) имеет производную на отрезке [a, b] и возрастает на этом отрезке, то ее производная на этом отрезке неотрицательна, т.е. f¢(x) ³ 0.

  2) Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на промежутке (а, b), причем f¢(x) > 0 для a < x < b, то эта функция возрастает на отрезке [a, b].

 Доказательство.

1)      Если функция f(x) возрастает, то f(x + Dx) > f(x) при Dx>0 и f(x + Dx) < f(x) при Dх<0,

тогда:

 

2) Пусть f¢(x)>0 для любых точек х1 и х2, принадлежащих отрезку [a, b], причем x1<x2.

 

  Тогда по теореме Лагранжа: f(x2) – f(x1) = f¢(e)(x2x1), x1 < e < x2

По условию f¢(e)>0, следовательно, f(x2) – f(x1) >0, т.е. функция f(x) возрастает.

 

 Аналогично можно сделать вывод о том, что если функция f(x) убывает на отрезке [a, b], то f¢(x)£0 на этом отрезке. Если f¢(x)<0 в промежутке (a, b), то f(x) убывает на отрезке [a, b].

  Конечно, данное утверждение справедливо, если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (a, b).

 

 Доказанную выше теорему можно проиллюстрировать геометрически:

 

 y  y

 

 

 

 

элементарные матрицы обратимы, обратные им матрицы элементарны и порождаются элементарными преобразованиями, обратными исходным элементарным преобразованиям.

 ◄ Предлагаем читателю самостоятельно убедиться в том, что матрица вида (1.17) обратна самой себе, а матрицы

   

являются соответственно обратными матрицами матриц вида (1.18) и (1.19). ►

 5) Пусть . Проведение в матрице  одного строчного (столбцового) элементарного преобразования равносильно умножению этой матрицы слева (справа) на элементарную матрицу порядка  (порядка ), отвечающую этому элементарному преобразованию.

 ◄ Ввиду свойства 1) элементарных преобразований в проверке нуждаются лишь элементарные преобразования второго и третьего типов. Предлагаем читателю показать самостоятельно, что умножение матрицы   вида (1.1) на матрицы вида (1.18) и (1.19) слева равносильно проведению в матрице  элементарных преобразований соответственно  и , а умножение на матрицы указанного вида справа равносильно проведению в ней элементарных преобразований соответственно   и . ►

Понятие матрицы появилось в средине ХIX века в работах У. Гамильтона, А.Кэли и Дж. Сильвестра. Фундаментальные результаты в теории матриц принадлежат К. Вейерштрассу, К. Жордану, Г. Фробениусу. Идея группы также принадлежит ХIX веку. Название «группа» появилось в работах Э. Галуа. Успех, который выпал на долю этой идеи в анализе, механике, геометрии и теоретической физике, явился основой бурного развития абстрактной алгебры и вторжения ее понятий в математику в первой половине ХХ века. Это вторжение связано с именами Р. Дедекинда, Д. Гильберта, Э. Нетер, Э. Атина.