Курс лекций высшей математики Оглавление

 

Обыкновенные дифференциальные уравнения.

 

  Решение различных геометрических, физических и инженерных задач часто приводят к уравнениям, которые связывают независимые переменные, характеризующие ту ил иную задачу, с какой – либо функцией этих переменных и производными этой функции различных порядков.

  В качестве примера можно рассмотреть простейший случай равноускоренного движения материальной точки. подробно

  Известно, что перемещение материальной точки при равноускоренном движении является функцией времени и выражается по формуле:

 В свою очередь ускорение a является производной по времени t от скорости V, которая также является производной по времени t от перемещения S. Т.е.

 

Тогда получаем:  - уравнение связывает функцию f(t) с независимой переменной t и производной второго порядка функции f(t).

 

 

  Определение. Дифференциальным уравнением называется уравнение, связывающее независимые переменные, их функции и производные (или дифференциалы) этой функции.

  Определение. Если дифференциальное уравнение имеет одну независимую переменную, то оно называется обыкновенным дифференциальным уравнением, если же независимых переменных две или более, то такое дифференциальное уравнение называется дифференциальным уравнением в частных производных.

  Определение. Наивысший порядок производных, входящих в уравнение, называется порядком дифференциального уравнения.

  Пример.

 - обыкновенное дифференциальное уравнение 1 – го порядка. В общем виде записывается .

 - обыкновенное дифференциальное уравнение 2 – го порядка. В общем виде записывается

 - дифференциальное уравнение в частных производных первого порядка.

  Определение. Общим решением дифференциального уравнения называется такая дифференцируемая функция y = j(x, C), которая при подстановке в исходное уравнение вместо неизвестной функции обращает уравнение в тождество.

 

Свойства общего решения.

 

  1) Т.к. постоянная С – произвольная величина, то вообще говоря дифференциальное уравнение имеет бесконечное множество решений.

  2) При каких- либо начальных условиях х = х0, у(х0) = у0 существует такое значение С = С0, при котором решением дифференциального уравнения является функция у = j(х, С0).

  Определение. Решение вида у = j(х, С0) называется частным решением дифференциального уравнения.

  Определение. Задачей Коши (Огюстен Луи Коши (1789-1857)- французский математик) называется нахождение любого частного решения дифференциального уравнения вида у = j(х, С0), удовлетворяющего начальным условиям у(х0) = у0.

  Теорема Коши. (теорема о существовании и единственности решения дифференциального уравнения 1- го порядка)

  Если функция f(x, y) непрерывна в некоторой области D в плоскости XOY и имеет в этой области непрерывную частную производную , то какова бы не была точка (х0, у0) в области D, существует единственное решение  уравнения , определенное в некотором интервале, содержащем точку х0, принимающее при х = х0 значение j0) = у0, т.е. существует единственное решение дифференциального уравнения.

  Определение. Интегралом дифференциального уравнения называется любое уравнение, не содержащее производных, для которого данное дифференциальное уравнение является следствием.

  Пример. Найти общее решение дифференциального уравнения .

Общее решение дифференциального уравнения ищется с помощью интегрирования левой и правой частей уравнения, которое предварительно преобразовано следующим образом:

 Теперь интегрируем

   - это общее решение исходного дифференциального уравнения.

 

  Допустим, заданы некоторые начальные условия: x0 = 1; y0 = 2, тогда имеем

 При подстановке полученного значения постоянной в общее решение получаем частное решение при заданных начальных условиях (решение задачи Коши).

 

 Определение. Интегральной кривой называется график y = j(x) решения дифференциального уравнения на плоскости ХОY.

  Определение. Особым решением дифференциального уравнения называется такое решение, во всех точках которого условие единственности Коши не выполняется, т.е. в окрестности некоторой точки (х, у) существует не менее двух интегральных кривых.

Особые решения не зависят от постоянной С.

  Особые решения нельзя получить из общего решения ни при каких значениях постоянной С. Если построить семейство интегральных кривых дифференциального уравнения, то особое решение будет изображаться линией, которая в каждой своей точке касается по крайней мере одной интегральной кривой.

  Отметим, что не каждое дифференциальное уравнение имеет особые решения.

 

  Пример. Найти общее решение дифференциального уравнения:  Найти особое решение, если оно существует.

 Данное дифференциальное уравнение имеет также особое решение у = 0. Это решение невозможно получить из общего, однако при подстановке в исходное уравнение получаем тождество. Мнение, что решение y = 0  можно получить из общего решения при С1 = 0 ошибочно, ведь C1 = eC ¹ 0. 

 Далее рассмотрим подробнее приемы и методы, которые используются при решении дифференциальных уравнений различных типов.

Теорема о связи знака производной с возрастанием и убыванием функции. Пусть функция  имеет в точке  конечную производную . Тогда если , то  возрастает в точке  (т.е. для значений х из некоторой окрестности точки выполняются условия: если , то , если , то . Если , то  убывает в точке  (т.е. для значений х из некоторой окрестности точки   выполняются условия: если , то , если , то ).

 Если в формулировке теоремы иметь в виду одностороннюю производную, например, справа, то утверждение теоремы будет справедливо для значений х, находящихся справа от , т.е. для .

 Док-во. По определению, . Рассмотрим случай . По теор.4.4.4 (о сохранении функцией знака предела) существует окрестность точки , в которой , что означает  , т.е. возрастание функции f(x) в точке .

 Случай  рассматривается аналогично.

 7.1.3. Теорема Ферма. Пусть функция f(x) определена на отрезке [a,b] и во внутренней точке  этого отрезка принимает экстремальное значение. Пусть в точке  существует . Тогда .

 Док-во от противного. Пусть  - точка экстремума функции f(x), и пусть . Рассмотрим для определённости случай, когда  - точка минимума; предположим, что . Тогда слева от точки  по теор.7.1.2 должно быть , что противоречит предположению о том, что  - точка минимума. Если мы предположим, что , то  должно быть справа от точки , чего тоже быть не может. Таким образом, .

  Случай, когда  - точка максимума, рассматривается аналогично. Геометрически теорема Ферма означает, что в точке экстремума гладкой функции касательная к графику функции параллельна оси Ох.