Курс лекций высшей математики Оглавление

 

Уравнения математической физики. Уравнения в частных производных.

 

  Определение. Дифференциальным уравнением в частных производных называется уравнение относительно неизвестной функции нескольких переменных, ее аргументов и ее частных производных различных порядков.

  Порядком дифференциального уравнения в частных производных называется порядок старшей производной, входящей в это уравнение. Решением уравнения будет некоторая функция , которая обращает уравнение в тождество.

 

Линейные однородные дифференциальные уравнения в частных производных первого порядка.

Дифференциальное уравнение в частных производных первого порядка от функции  можно в общем виде записать как

 Линейное уравнение в частных производных имеет вид:

  , (1)

где Xi – некоторые заданные функции.

 

  Очевидно, что одним из решений такого уравнения будет функция u = C.

 

Рассмотрим систему уравнений:

   (2)

или - такая система называется нормальной.

Общее решение этой системы имеет вид:

 

Если разрешить эти уравнения относительно постоянных С, получим:

Каждая из функций j является интегралом системы (2).

 

  Теорема. Если   - интеграл системы (2), то функция  - решение уравнения (1).

 

Классификация основных типов уравнений математической физики.

1) Волновое уравнение. (Уравнение колебаний струны, электроколебания, крутильные колебания вала и др.) Это простейшее уравнение гиперболического типа.

 

2) Уравнение теплопроводности. (Уравнение Фурье) Это простейшее уравнение параболического типа. Описывает процессы теплопроводности, фильтрации жидкости и газа, некоторые вопросы теории вероятностей.

 

3) Уравнение Лапласа. Это простейшее уравнение эллиптического типа. Описывает магнитные и электрические поля, гидродинамику, диффузию и др.

 

В этих уравнениях функция u зависит от двух переменных, однако, задача может быть расширена для случая трех переменных:

 

1) Волновое уравнение:

2) Уравнение теплопроводности:

3) Уравнение Лапласа:

Рассмотрим подробнее каждое из этих уравнений.

Определенный интеграл.

Определение.

 Вычисление площади криволинейной трапеции. Пусть на отрезке    задана непрерывная функция , принимающая на этом отрезке неотрицательные значения :  при . Требуется определить площадь   трапеции , ограниченной снизу отрезком , слева и справа - прямыми  и , сверху - функцией .


Для решения этой задачи разделим произвольным образом основание   фигуры точками  на  частей символом  будем обозначать длину -го отрезка: . На каждом из отрезков  выберем произвольную точку , найдём , вычислим произведение  (это произведение равно площади прямоугольника  с основанием  и высотой ) и просуммируем эти произведения по всем прямоугольникам. Полученную сумму обозначим : .

 равно площади ступенчатой фигуры, образованной прямоугольниками , ; на левом рисунке эта площадь заштрихована.  не равна искомой площади , она только даёт некоторое приближение к . Для того, чтобы улучшить это приближение, будем увеличивать количество  отрезков таким образом, чтобы максимальная длина этих отрезков  стремилась к нулю (на рисунке ступенчатые фигуры изображены при  (слева) и при  (справа)). При  разница между  и  будет тоже стремиться к нулю, т.е. 

 .

 11.1.2. Определение определённого интеграла. Пусть на отрезке   задана функция . Разобьём отрезок  произвольным образом на  частей точками ; длину -го отрезка обозначим : ; максимальную из длин отрезков обозначим . На каждом из отрезков  выберем произвольную точку  и составим сумму .

Сумма  называется интегральной суммой. Если существует (конечный) предел последовательности интегральных сумм  при , не зависящий ни от способа разбиения отрезка  на части , ни от выбора точек , то функция  называется интегрируемой по отрезку , а этот предел называется определённым интегралом от функции  по отрезку  и обозначается

 .

 Функция , как и в случае неопределённого интеграла, называется подынтегральной, числа  и  - соответственно, нижним и верхним пределами интегрирования. Кратко определение иногда записывают так: .

 В этом определении предполагается, что . Для других случаев примем, тоже по определению:

 Если , то ; если , то .