Несобственные интегралы второго рода

Пусть на полуинтервале $ [a;b)$ задана функция $ f(x)$ , интегрируемая на любом отрезке $ [a;b_1]$ , где

 Пример. Решить систему линейных уравнений методом Гаусса.

Составим расширенную матрицу системы.

А* =

Таким образом, исходная система может быть представлена в виде:

, откуда получаем: x3 = 2; x2 = 5; x1 = 1.

 Пример. Решить систему методом Гаусса.

Составим расширенную матрицу системы.

Таким образом, исходная система может быть представлена в виде:

, откуда получаем: z = 3; y = 2; x = 1.

 Полученный ответ совпадает с ответом, полученным для данной системы методом Крамера и матричным методом.

 Для самостоятельного решения:

 Ответ: {1, 2, 3, 4}.

 При использовании компьютерной версии “Курса высшей математики” можно запустить программу, которая решит любую систему линейных уравнений 3- го порядка методом Крамера и методом Гаусса или систему 4 – го порядка методом Гаусса. Достаточно ввести только коэффициенты при переменных системы. Программа выдаст подробный отчет о ходе решения и результатах.