Инженерная графика
Физика
Атомные станции
Строймех
ТКМ
Начертательная геометрия
Экология энергетики
Сопромат
Готика
Черчение
Теплотехника
Математика

Театр

Конспект лекций
Атомная энергетика
Карта

Дефекты кристаллических решеток.

  Из термодинамики известно, что всякая система стремится к минимуму свободной энергии (F), где F является разностью между внутренней энергией системы U и связанной энергией системы ТS.

F = U - TS (1) 

 Поэтому появление в кристаллической решетке дефектов может оказаться энергетически выгодным.

 Все дефекты кристаллической решетки принято делить на две большие группы: геометрические дефекты и энергетические дефекты. При появлении в решетке геометрических дефектов кристаллическая решетка локально искажается. При наличии энергетических дефектов атомы остаются на своих местах, но энергия одного или группы атомов оказывается повышенной.

6. Точечные дефекты решетки

К ним относятся атомы инородных элементов (легирующих элементом или примесей), межузельные атомы (атомы основного элемента, по каким-либо причинам покинувшие узлы кристаллической решетки и застрявшие в междоузлиях), вакансии или не занятые атомами узлы кристаллической решетки.

Рис. 10. Схематическое изображение точечных дефектов кристаллической решетки:

а) – вакансия, б) – межузельный атом, в) – чужеродный атом.

Я. И. Френкелем-При наличии в кристаллической решетки вакансии атом может перескочить из узла решетки в вакантное место. Тем самым вакансия смещается, и процесс диффузии можно описывать как последовательное перемещение атомов или как движение вакансий.

Шоттки- Атом выходит на поверхность кристалла, и образующаяся вакансия мигрирует (перемещается) в глубь кристалла.

 Распространение электронов удобнее всего представить в виде движения электронной волны. При взаимодействии электронной волны с узлами кристаллической решетки, электронная волна передает энергию находящимся в них ионам. Поглотив энергию электронной волны, ионы возбуждаются, колеблются и распространяют во все стороны дифрагированные электронные волны. Дифрагированные волны интерферируют, и образуется новая волна.

Появление в кристаллической решетке дефектов приводит к смещению некоторых ионов из равновесных положений, и дифрагированные волны становятся некогерентными (рис. 11,б). С ростом температуры концентрация вакансий растет, а следовательно, увеличивается удельное электросопротивление.

Рис.11. а) Дифракция электронной волны на правильной кристаллической решетке. б) Дифракция электронной волны на искаженной решетке

Появление любых точечных дефектов ведет к снижению электросопротивления материалов с ионной связью.

В материалах с ковалентной связью присутствие вакансий приводит к обрыву ковалентной связи и появлению на валентной оболочке атома неспаренного электрона. Наличие неспаренных электронов энергетически невыгодно, и атом теряет его. Таким образом, в материале появляются два носителя заряда: отрицательно заряженный свободный (делокализованный) электрон и положительно заряженная дырка. Следовательно, увеличение концентрации вакансий ведет к падению удельного электрического сопротивления материалов с ковалентной связью.

7. Линейные дефекты кристаллической решетки.

Рис.12. Пластическая деформация металла: а) - образец до деформации, б) - образец после деформации

 Деформация происходит путем послойного смещения одной части кристалла относительно другой.

Я.И. Френкелю - что под действием механических напряжений атомы в узлах кристаллической решетки одновременно смещаются вдоль плотноупакованных плоскостей в плотноупакованных направлениях. Это обстоятельство позволило Френкелю предположить, что в металлах имеются легко подвижные дефекты - дислокации.

На основании предположения Френкеля Тейлором, Орованом и Поляни

 Согласно этой модели, в кристалле имеется оборванная плоскость - экстраплоскость. Вблизи обрыва экстраплоскости остальные плоскости кристаллической решетки изгибаются. Таким образом, вблизи края экстраплоскости кристаллическая решетка искажена. Величина искажений кристаллической решетки быстро снижаются при удалении от края экстраплоскости, но сохраняется при движении вдоль линии обрыва. Поэтому такую дислокацию называют краевой.

Рис. 13. Модель краевой дислокации.

 

  Как видно из приведенного рисунка (рис. 14), для построения замкнутого контура вокруг участка, содержащего дислокацию, потребовалось 23 шага. При построении аналогичного контура в области совершенного кристалла аналогичный контур не замыкается и для замыкания контура требуется еще один вектор (b), в настоящее время называемый вектором Бюргерса. Однако в любом случае вектор Бюргерса оказывается перпендикулярным линии краевой дислокации.

Предложил геометрический образ такой дислокации и назвал ее винтовой дислокацией.


Рис. 14. Построение контура Бюргерса. а) участок кристалла содержащего дислокацию; б) участок совершенного кристалла.

У вектора Бюргерса есть ряд особенностей:

вектор Бюргерса нонвариантен, то есть неизменен. Следовательно, дислокация не может оборваться в кристалле;

энергия упругих искажений решетки пропорциональна квадрату модуля вектора Бюргерса;

при движении решеточной дислокации с вектором Бюргерса, равным периоду трансляции решетки, кристаллическая решетка не изменяется.

 Материалы с плотноупакованными кристаллическими решетками - металлы - обладают высокой пластичностью. 


Электротехнические материалы