Основы теории сплавов Электропроводность диэлектриков Магнитные материалы Полупроводниковые материалы

Электротехнические материалы (ЭТМ) применяют для производства элементов (деталей), используемых для сборки электронных схем и осуществляемых прохождение электрического тока, его электрическую изоляцию, генерацию, усиление, выпрямление, модуляцию и т. п. Элементы, необходимые для осуществления этих операций: провода, кабели, волноводы, изоляторы, резисторы, катушки индуктивности, магниты, трансформаторы, генераторы, диоды, транзисторы, термисторы, фоторезисторы, электронные лампы, электромеханические преобразователи, вариконды, лазеры, запоминающие устройства ЭВМ и т. п., — могут быть изготовлены только из ЭТМ определенного класса, имеющих вполне определенные электрические, механические и химические свойства. От присущих данному материалу требуемых свойств будут зависеть качество, надежность и безопасность работы данной детали и, следовательно, электроустановки в целом.

Конструкционные материалы (КМ) используют для изготовления несущих конструкций и вспомогательных деталей и узлов, например, стальных рельсов, опор, консолей контактной сети электрифицированных железных дорог, которые несут не только механические нагрузки, но и электрические; корпусов для электрооборудования, предохраняющих от механических нагрузок; шасси, на которых монтируется электросхема; шкал органов управления и т. п.

При рассмотрении средней по сложности электрической схемы можно увидеть, что она состоит из элементов, изготовленных из четырех основных классов электротехнических материалов: диэлектрических, полупроводниковых, проводниковых и магнитных. По своему поведению в электрическом поле ЭТМ подразделяют на три класса: диэлектрические, полупроводниковые и проводниковые. Значения их удельного сопротивления находятся соответственно в пределах: 106 - 1017, 10-6 - 108, 10-8-10-5 Омм, а значения ширины запрещенной зоны соответственно равны 0—0,05; 0,05—3 и более 3 эВ. В магнитном же поле — на два класса: магнитные (сильномагнитные) и немагнитные (слабомагнитные). К первым относятся ферро- и ферримагнетики, а ко вторым — диа-, пара- и антиферромагнетики.

Диэлектрические материалы обладают способностью поляризоваться под действием приложенного электрического поля и подразделяются на два подкласса: диэлектрики пассивные и активные.

Пассивные диэлектрики (или просто диэлектрики) используют:

1) для создания электрической изоляции токопроводящих частей — они препятствуют прохождению электрического тока другими, нежелательными путями и являются материалами электроизоляционными;

2) в электрических конденсаторах — служат для создания определенной электрической емкости; в данном случае важную роль играет их диэлектрическая проницаемость: чем выше эта величина, тем меньше габариты и вес конденсаторов.

Активные диэлектрики в отличие от обычных применяют для изготовления активных элементов (деталей) электрических схем. Детали, изготовленные из них, служат для генерации, усиления, модуляции, преобразования электрического сигнала. К ним относятся: сегнето- и пьезоэлектрики, пироэлектрики, электреты, люминофоры, жидкие кристаллы, электрооптические материалы и др.

Полупроводниковые материалы по величине удельной электропроводности занимают промежуточное положение между диэлектриками и проводниками. Характерной их особенностью является существенная зависимость электропроводности от интенсивности внешнего энергетического воздействия: напряженности электрического поля, температуры, освещенности, длины волны падающего света, давления и т. п. Эта их особенность положена в основу работы полупроводниковых приборов: диодов, транзисторов, термисторов, фоторезисторов, тензодатчиков и др.

Проводниковые материалы подразделяются на четыре подкласса: материалы высокой проводимости, сверхпроводники и криопроводники, материалы высокого (заданного) сопротивления, контактные материалы.

Материалы высокой проводимости используют там, где необходимо, чтобы электрический ток проходил с минимальными потерями. К таким материалам относятся металлы: Си, Al, Fe, Ag, Au, Pt и сплавы на их основе. Из них изготавливают провода, кабели и другие токопроводящие части электроустановок.

Сверхпроводниками являются материалы, у которых при температурах ниже некоторой критической Ткр сопротивление электрическому току становится равным нулю.

Криопроводники — это материалы высокой проводимости, работающие при криогенных температурах (температуре кипения жидкого азота минус 195,6 °С).

Проводниковыми материалами высокого (заданного) сопротивления являются металлические сплавы, образующие твердые растворы. Из них изготавливают резисторы, термопары и электронагревательные элементы.

Из контактных материалов изготавливают скользящие и разрывные контакты. В зависимости от предъявляемых требований эти материалы очень разнообразны по своему составу и строению. К ним относятся, с одной стороны, металлы высокой проводимости (Сu, Ag, Au, Pt и т. п.) и сплавы на их основе, с другой — тугоплавкие металлы (W, Та, Мо и др.) и композиционные материалы. Последние, хотя и имеют относительно высокое удельное электрическое сопротивление, обладают повышенной стойкостью к действию электрической дуги, образующейся при разрыве контактов.

К магнитным материалам, используемым в технике, относят ферромагнетики и ферриты. Собственное магнитное поле в сотни и тысячи раз больше, чем вызвавшее его внешнее магнитное поле. Для них характерно наличие магнитного гистерезиза. Магнитные материалы применяют для концентрации магнитного поля в сердечниках катушек индуктивности, дросселях и других конструкциях, в качестве магнитопроводов запоминающих устройств в ЭВМ и т. п. Они способны сильно намагничиваться даже в слабых полях, а некоторые из них сохраняют намагниченность и после снятия внешнего магнитного поля. К наиболее широко используемым в технике магнитным материалам относятся Fe, Co, Ni и их сплавы.

Конструкционные материалы — одна из самых многочисленных групп. В нее входят материалы металлические и неметаллические: черные и цветные металлы, природные и синтетические полимеры и материалы на их основе, которые, в свою очередь, содержат десятки (и даже сотни) различных по составу, свойствам и назначению КМ. Наиболее широко используемыми в технике КМ являются такие металлические сплавы, как углеродистые стали, легированные стали и чугуны. Строение, механические свойства и фазовые превращения этих металлических сплавов рассмотрены в разделе КМ, а цветных металлов и полимеров - в разделе ЭТМ; приведены основные технологические приемы переработки материалов и сортамент металлического проката.

Полиморфизм - сушествование одного и того же металла в нескольких кристалических формах (полиморфических модификациях в зависимости от температуры). Полиморфизм так же называют аллотропией. К примеру железо (альфа и бета). Явление полиморфизма в металлах имеет практическое значение так, например,благодоря полиморфизму в железе можно изменять свойства сталей термической обработкой (отжиг, закалка и др.)
аудит конкурсное производство Электротехнические материалы