Основы теории сплавов Электропроводность диэлектриков Магнитные материалы Полупроводниковые материалы

Текстурирование — это некоторая упорядоченность в ориентации кристаллических зерен, достигаемая специальной обработкой (например, прокаткой) поликристаллических материалов. При текстурировании у материалов возникает анизотропия свойств. Например, в трансформаторостроении для улучшения магнитных свойств некоторых марок электротехнической стали, используемых для изготовления сердечников трансформаторов, их текстурируют на ребро.

Некоторые вещества находятся в аморфно-кристаллическом состоянии, т. е. в них сосуществуют две фазы: аморфная и кристаллическая. Такое строение имеют многие полимеры, ситаллы (стекла специального состава) и др.

В зависимости от того, какие частицы (атомы, ионы или молекулы) находятся в узлах решетки, различают следующие основные типы кристаллических структур: атомные, металлические, ионные и молекулярные.

Любой материал представляет собой продукт взаимодействия огромного количества атомов, и свойства материала зависят от характера взаимодействия этих атомов. Зная характер взаимодействия атомов, можно прогнозировать свойства материалов. Поскольку взаимодействие множества атомов анализировать достаточно сложно, вначале для простоты рассмотрим взаимодействие двух атомов.

Между двумя атомами действует сила притяжения. По природе является кулоновской, следовательно, она убывает обратно пропорционально квадрату расстояния между атомами. Помимо силы притяжения, между атомами действует и сила взаимного отталкивания, которая обратно пропорциональна расстоянию в степени n, где n больше 2. Складывая силы притяжения и отталкивания, получаем результирующую силу взаимодействия двух атомов (рисунок 2.2, а). При расстоянии между атомами, равном rО силы притяжения и отталкивания взаимно компенсируют друг друга, результирующая сила взаимодействия равна нулю, и это расстояние является наиболее устойчивым.

Оценим энергию потенциального взаимодействия двух атомов как работу, с обратным знаком, по перемещению иона из бесконечности в данную точку.

 а б

Рисунок 2.2 – Зависимость сил взаимодействия между атомами (а) и

 энергии потенциального взаимодействия (б) от

  расстояния между атомами.

Рисунок 2.3 – Зависимость энергии потенциального взаимодействия

 (Wp) от расстояния между атомами (x) для случая

  взаимодействия множества атомов

Из рисунка 2.2 б видно, что при минимальной энергии потенциального взаимодействия расстояние между соседними ионами равно rО. Увеличение энергии системы двух атомов (например, за счет роста тепловой энергии) ведет к появлению возможности взаимного смещения атомов относительно друг друга, причем с ростом энергии системы амплитуда колебаний возрастает. Другой интересной особенностью влияния температуры на свойства материалов является термическое расширение. Как видно из рисунка 2.2 б, кривая потенциального взаимодействия (или потенциальная кривая) асимметрична, поэтому при росте температуры среднее расстояние между атомами увеличивается, и линейные размеры тел увеличиваются. Изменение линейных размеров тела при нагреве описывается коэффициентом теплового расширения: aТ = (1/L)(dL/dT). Коэффициент теплового расширения снижается при увеличении глубины потенциальной ямы.

В том случае, когда взаимодействует множество атомов, смещение любого из них приводит к росту энергии системы. Поэтому потенциальную кривую можно представить в виде периодической функции (рисунок 2.3).

Для переброса атома из одного равновесного положения в другое требуется повышение энергии. Поэтому в том случае, когда энергия системы минимальна или незначительно отличается от минимальной, атомы не могут перемещаться из одного положения в другое, и мы имеем дело с твердым телом. При значительном повышении энергии системы атомы активно колеблются, обмениваются энергией - и в результате могут переходить из одного положения в другое. В этом случае мы имеем дело с жидким телом. Дальнейший рост энергии системы приводит к выходу атомов из потенциальной ямы, они перестают взаимодействовать друг с другом, могут занимать различные положения – и мы имеем дело с газом.

Увеличение глубины потенциальной ямы ведет к росту температуры плавления и температуры испарения вещества. Вместе с тем, увеличение глубины потенциальной ямы ведет к уменьшению коэффициента теплового расширения: aТ = (1/L)(dL/dT). Таким образом, вещества с большей температурой плавления, как правило, имеют меньший коэффициент термического расширения.

Полиморфизм - сушествование одного и того же металла в нескольких кристалических формах (полиморфических модификациях в зависимости от температуры). Полиморфизм так же называют аллотропией. К примеру железо (альфа и бета). Явление полиморфизма в металлах имеет практическое значение так, например,благодоря полиморфизму в железе можно изменять свойства сталей термической обработкой (отжиг, закалка и др.)
Электротехнические материалы