Основы теории сплавов Электропроводность диэлектриков Магнитные материалы Полупроводниковые материалы

Строение металлического слитка

Кристаллы, образующиеся в процессе первичной кристаллизации, могут иметь различную форму в зависимости от скорости охлаждения, направления теплоотвода, а также от содержания примесей.

Первичный древовидный кристалл называется дендритом.

Максимальная скорость роста кристаллов наблюдается по таким плоскостям и направлениям, которые имеют наибольшую плотность упаковки атомов. В результате вырастают длинные ветви, которые называются осями первого порядка (рисунок 3.6). На осях первого порядка появляются и начинают расти ветви второго порядка, от которых ответвляются оси третьего порядка. В последнюю очередь идет кристаллизация в участках между осями дендрита.

1, 2 и 3 – оси первого, второго и третьего порядка

Рисунок 3.6 – Схема строения дендрита

При заливке жидкого металла в форму и последующей кристаллизации получается слиток, отдельные зоны которого отличаются микроструктурой. Схема строения металлического слитка приведена на рисунке 3.7.

Структура литого слитка состоит из трех основных зон. Первая зона — наружная мелкозернистая корка 1, состоящая из неориентированных мелких кристаллов — дендритов. При первом соприкосновении со стенками изложницы (форма, куда заливают жидкий металл) в тонком прилегающем слое жидкого металла возникают большой градиент температур и явление переохлаждения, ведущее к образованию большого числа центров кристаллизации. В результате корка получает мелкозернистое строение.

1 – мелкозернистая корка; 2 – столбчатые кристаллы (дендриты); 3 – крупные равноосные кристаллы; 4 – усадочная раковина

Рисунок 3.7 – Схема строения металлического слитка

Вторая зона слитка — зона столбчатых кристаллов 2. После образования самой корки условия теплоотвода меняются, градиент температур в прилегающем слое жидкого металла резко уменьшается и, следовательно, уменьшается степень переохлаждения стали. В результате из-за небольшого числа центров кристаллизации начинают расти в направлении теплоотвода столбчатые кристаллы. С увеличением перегрева расплава в момент начала заливки происходит, как правило, расширение зоны столбчатых кристаллов.

Третья зона слитка — зона крупных равноосных кристаллов 3. В центре слитка уже нет определенной направленности отвода тепла. В результате образуется крупная равноосная структура.

Жидкий металл имеет больший объем, чем закристаллизовавшийся, поэтому залитый в форму металл в процессе кристаллизации уменьшается в объеме, что приводит к образованию пустот, называемых усадочными раковинами 4. Верхнюю часть слитка с усадочной раковиной отрезают. В слитках небольших размеров зона 3 может отсутствовать. Кристатлизация, приводящая к стыку зон столбчатых кристаллов, называется транскристаллизацией.

Слитки сплавов, особенно высоколегированных, имеют неоднородный химический состав.

Неоднородность по химическому составу называется ликвацией.

Ликвация может быть зональная (различная концентрация элементов по зонам сечения слитка), гравитационная (образуется в результате разницы в удельных весах твердой и жидкой фазы, а также при кристаллизации несмешивающихся жидких фаз), дендритная (более тугоплавкие и чистые элементы образуют оси 1-го порядка, менее тугоплавкие — 2-го и 3-го порядка, а самые легкоплавкие и содержащие примеси — заполняют межосное пространство).

Возможность измельчения кристаллического зерна в стальных слитках и улучшения свойств стали в результате перемешивания расплава или сотрясения изложницы была предсказана Д. К. Черновым. При перемешивании расплава магнитным полем, воздействии ультразвуковых колебаний и низкочастотной вибрации на процесс кристаллизации облегчается выделение газов, более равномерно распределяются неметаллические включения по сечению слитка, значительно увеличивается плотность и улучшаются механические свойства литой стали.

На практике стараются получить металл с мелким зерном, который имеет, как правило, лучшие эксплуатационные свойства. Получить мелкое зерно можно, увеличивая число центров кристаллизации или уменьшая скорость их роста.

Добавки, специально вводимые в жидкий металл для получения мелкозернистой структуры, называются модификаторами, а технологическая операция — модифицированием.

По механизму действия их подразделяют на модификаторы I и II рода.

К модификаторам I рода относят такие, которые образуют в расплаве высокодисперсную взвесь. Частицы этой взвеси служат зародышами, вокруг которых образуются и растут кристаллы. Для металлических расплавов такими модификаторами могут быть тугоплавкие металлы или их соединения, частицы которых находятся во взвешенном состоянии в предкристаллизационный период. К ним относятся, например, Ti, V, В, Al, Zr, Nb и их нитриды.

В качестве модификаторов при модифицировании алюминиевых сплавов применяют Ti, V, Zr; стали — Al, V, Ti; чугуна — Mg, Zr.

К модификаторам II рода относят элементы или их соединения, которые адсорбируются на гранях зарождающихся кристаллов и тормозят их рост. Адсорбция не происходит на всех гранях равномерно, в результате чего происходит задержка в развитии отдельных граней кристалла, что приводит к изменению его формы.

Кроме того, замедление скорости роста кристалла сопровождается увеличением числа центров кристаллизации, что способствует измельчению зерна.

Хорошими модификаторами стали являются Na, К, Rb, Ba, редкоземельные элементы (РЗМ). Алюминиевые сплавы (силумины) приобретают мелкозернистое строение и лучшие механические свойства (повышается пластичность) после обработки сплава в жидком состоянии фтористым натрием (NaF) или легкоплавким тройным модификатором 25 % NaF + 62,5 % NaCl + 12,5 % KCl.

Процесс кристалиизации Складывается из 2х процессов: 1) зароддение мельчайших частиц, называемых центрами кристаллизации (зародышами) 2) рост кристаллов из этих зародышей При температурах, близких к температурам кристаллизации, в жидком металле возможно образование микрообъемов, в которых атомы "упакованны" так же как в будущем кристалле. Такие группировки атомов в жидком металле называются фазовыми (гетерогенными) флуктуациями, которые и являются центрами кристаллизации.
Электротехнические материалы