Геометрические характеристики сечений Задания на выполнение курсовых работ по сопротивлению материалов Техническая механика Понятие о трении Сопротивление усталости

Решение типовых задач по курсу сопротивления материалов Лабораторные работы

Геометрические характеристики сечений

При изучении напряженно деформированного состояния центрально- растянутых стержней использовалась единственная геометрическая характеристика – площадь поперечного сечения A. Изучение напряженно-деформированного состояния стержней, работающих на изгиб, кручение и другие виды сопротивления, выявляет новые интегральные характеристики сечений. Для определения напряжений и деформаций стержней необходимо знать численные значения этих геометрических характеристик. Следовательно, необходимо уметь определять эти характеристики, знать их свойства.

 Геометрические характеристики сечений определяются как некоторые интегралы по площади сечений (рис. 2.1).

Если сечение разбить на несколько подобластей, то любая из геометрических характеристик равна сумме соответствующих геометрических характеристик подобластей сечения относительно общих осей.

Обычно, при определении геометрических характеристик сечение сложной формы разбивают на подобласти - элементы сечения, геометрические характеристики которых либо могут быть вычислены по известным формулам - элементы сечений в форме  прямоугольников, треугольников, круга, либо определены из справочных таблиц - геометрические характеристики прокатных профилей или геометрических характеристик сложных сечений определенных форм.

Расчет геометрических характеристик сечений начинают с определения координат центра тяжести сечения относительно произвольных начальных осей p, q . Координаты центра тяжести сечения определяются по формулам:

  . (2.1)

Если координаты центра тяжести элемента сечения известны, то статические моменты этого элемента относительно осей могут быть определены по формулам:

 . (2.2)

Определение геометрических характеристик сечений 

Расчет геометрических характеристик сечения проводят в следующем порядке:

Заданное сечение вычерчивается в определенном масштабе и разбивается на элементы, элементы нумеруются, номера элементов указываются на чертеже.

Задаются начальными осями р, q. Начальные оси могут задаваться произвольно. Однако, для упрощения вычислений удобно, если начальные оси проходят через центр тяжести одного или нескольких элементов сечения, на которые разбито заданное сечение. Все начальные размеры, необходимые для вычисления геометрических характеристик элементов и определения координат центров тяжестей элементов указываются на чертеже. Для прокатных профилей на чертеже сечения указываются необходимые для расчета размеры, взятые из таблиц проката.

Определяют координаты центров тяжести элементов сечения относительно начальных осей  и  и геометрические характеристики сечений относительно собственных осей элементов Аi, , . Собственные оси элементов – оси, параллельные начальным осям р, q, проходящие через центры тяжестей элементов сечения.

Замечание. Необходимо проявлять внимательность при определении координат центров тяжестей элементов сечения и их геометрических характеристик, так как ошибки, допущенные на этом этапе не имеют алгоритма проверки и приводят к ошибочным результатам при дальнейших вычислениях.

Определяют координаты центра тяжести всего сечения по формулам:

 .  (2.3)

Центральные оси х, у (оси проходящие через центр тяжести всего сечения), параллельные начальным осям показываются на чертеже. 

5. Определяют координаты центров тяжести элементов сечения относительно центральных осей сечения:

  . (2.4)

Замечание. Геометрические характеристики сечений, координаты центров тяжести сечений относительно начальных и центральных осей целесообразно оформить в виде таблицы (см. пример расчета),

6. Проводится контроль правильности определения координат центров тяжести сечения и его элементов. Для этого вычисляется статический момент сечения относительно центральных осей, которые при правильном расчете должны равняться нулю:

 . (2.5)

 Замечание. Все расчеты проводятся с ограниченной точностью. Инженерные расчеты, обычно, проводят с учетом 3 – 4 значащих цифр. Оставлять большее число значащих цифр нецелесообразно, так как исходные данные (исходные размеры и значения геометрических характеристик) не обеспечивают большую точность и поэтому результаты с большим числом значащих цифр нельзя считать более достоверными. Точность результата оценивают, обычно, относя невязку (разность между приближенным и точным значением) к точному или приближенному значению. Однако, если результатом вычислений должен быть ноль, такой подход невозможен. В этом случае отдельно подсчитывают положительные  и отрицательные  слагаемые и абсолютное значение невязки и относят невязку к сумме положительных (или отрицательных) слагаемых:

 . (2.6) 

Погрешность инженерных расчетов обычно не должна превышать 3%.

Расчет трехопорной рамы Изучение сопротивления материалов требует решения конкретных задач, что позволяет глубже понять теоретические основы дисциплины. В настоящей работе рассмотрены типовые задачи по следующим разделам курса сопротивления материалов

Статически неопределимый стержень кусочно-постоянного сечения Рассмотрим стержень кусочно-постоянного сечения, закрепленный с двух концов, под действием продольных сосредоточенных сил Fk и собственного веса 

Для определения внутренних усилий и перемещений в стержне его разбивают на участки. Границами участков являются сечения стержня, где приложены сосредоточенные внешние силы или меняется площадь поперечного сечения стержня. Рассматриваемый стержень состоит из четырех участков. Пронумеруем граничные сечения стержня, присвоив точке В нулевой номер. В этом случае номера участка будет совпадать с номером верхнего сечения участка стержня. Очевидно, в основной системе перемещение верхнего сечения стержня в точке А равно нулю, так как он закреплен.

Для построения эпюры нормальных напряжений вдоль оси стержня, определим значения напряжения в опорных сечениях

Расчет систем стержней, соединенных с недеформируемым элементом

Расчет стержневой системы по предельному состоянию Расчет по предельному состоянию позволяет определить несущую способность конструкцию, т.е. предельную нагрузку, при которой конструкция теряет свою работоспособность. Потеря конструкцией работоспособности происходит по причине разрушения или потери конструкции или отдельных ее элементов, либо по причине возникновения в конструкции больших деформаций и превращения конструкции в механизм. Именно по последней причине происходит выход из рабочего состояния конструкций, состоящих из пластичных материалов.

Определяют геометрические характеристики сечения – осевые, полярный и центробежный моменты инерции сечения относительно центральных осей

Круг Мора моментов инерции сечений Кроме аналитического метода определения положения главных осей и вычисления главных моментов инерции по формулам можно использовать графический метод – построение круга Мора моментов инерции сечения. Графический метод может использоваться как независимо, так и для контроля правильности аналитических расчетов. При аккуратном построении круга Мора графический метод позволяет определить положение главных осей и значения главных моментов инерции с точностью 3-х – 5-ти процентов

Геометрические характеристики прокатных профилей Для сечений, составленных из прокатных профилей (двутавры, швеллера, уголки) геометрические характеристики определяются в соответствии с ГОСТ (государственный общероссийский стандарт). В таблицах прокатных профилей приводятся все размеры, согласно которым изготовляются прокатные профили, а так же значение геометрических характеристик - осевых моментов инерции, моментов сопротивления, радиусов инерции, координаты центра тяжести сечения, а также значение , определяющего положение главных осей несимметричных сечений (неравнобокий уголок).

Определяем координаты центров тяжести элементов сечения относительно центральных осей


изучение явления потери устойчивости при осевом сжатии прямого стержня и сравнение критической силы